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Learning Objectives

Contrast metagenomic from amplicon sequencing

Describe general approaches for determining taxonomic
composition from metagenomic data

Describe major steps in constructing and evaluating
metagenomic assembled genomes
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16S rRNA gene sequencing

: targeted sequencing of the

Q 4& 16S rRNA gene which acts as a
marker for identification
— Well established

l — Relatively inexpensive (~50,000

reads/sample)

— Only amplifies what you want (no

_ host contamination)
Who is there?



Metagenomics

ﬁ ;E : sequencing all the
- DNA in a sample

-E:} — No primer bias
— Can identify all microbes (bacteria,

eukaryotes, viruses)
— Better taxonomic resolution

— More expensive (>5-10 million
reads/sample)

Who is there? — Provides functional information
& — Possibly reconstruct genomes

What are they doing?



Taxonomic Profiling

With this raw data:

How do we get this
output?
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Challenges

Reads are randomly assorted

Reads are usually short (~100-150bp)

Spotty genome coverage due to sequencing depth
Lateral gene transfer

Computational time (Large # reads vs huge databases)

Let’s not forget about other biases!
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Initial bioinformatic processing steps

Many initial steps are similar to 16S studies
De-multiplexing and lane merging

Quality filtering

Stitching paired end reads --> not usually

Removal of unwanted host-associated reads



ldentifying “contaminant” reads

 Contaminant reads are usually associated
with the sampled host (e.g. human,
mouse, plant, etc.)

* Typically removed by mapping reads to
host reference genome (e.g. bwa, Bowtie2)

‘
. . (PhiX174) 5.3Kb @'
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Independent reference-
based processing
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Reference Based Approaches

 “All reads” approach

— Attempts to assign taxonomic classification to as many reads as
possible

— Similarity search is computationally demanding

— May be hard to assign accurate taxonomy to a short read (e.g.,
repetitive sequence, LGT, no homologs, etc.)

 Marker approaches

— Uses one or more genome markers to determine the taxonomic
composition

— Only uses a minor subset of the data and thus hard to link to
functions downstream

— Very dependent on choice of markers



Marker Based

* Single Gene

e |dentify and extract reads hitting a single marker gene (e.g. 16S,
cpn60, or other “universal” genes)

e Use existing bioinformatics pipeline (e.g. QIIME, etc.)

* Multiple Gene

e Several universal genes
— mOTUs2 (Milanese et al, 2019)
» Uses 10 universal single copy genes
e Clade specific markers
— MetaPhlAn3 (Beghini et al., 2021)



MetaPhlAn3

Uses “clade-specific” gene markers

Uses ~1.1 million markers derived from ~17,000 genomes

Can sometimes identify down to the strain level

Handles millions of reads on a standard computer within
a few minutes



MetaPhlAn Marker Selection

for clade Y

— .

ChocoPhlAn (offline pipeline)

- Identify all core genes for all clades
- Screen core genes for unique marker genes
- Select most representative marker genes

(MetaPhlAn )

Metagenome

' - Blast reads agains the marker genes

- Assign, count, normalize reads

for clade Y

Available
reference
genomes




All Reads Approaches

Kraken/Bracken
Centrifuge

Kaiju

And others!

Most of these methods use a k-mer based searching
solution along with other heuristics to speed up large
similarity searches

Many use a lowest common ancestor approach for taxon
classification after similarity search



k-mer-based approaches

Sub-sequences of length k (k-mers)

ATCGATCGATCGATCGATCGATCGATC
ATCGA
TCGAT
CGATC
Database of GATCG

genomes ATCGA
TCGAT
CGATC
GATCG
ATCGA
TCGAT
CGATC
GATCG
ATCGA
TCGAT



Lowest Common Ancestor (LCA)
Approach

——— Escherichia coli (V')

Assignment to family
Enterobacteriaceae

___ Escherichia albertii (X)

*

—— Salmonella enterica (V')

Salmonella bongori (X)

Pseudomonas aeruginosa (X)



Kraken & Bracken

* Kraken does the (fast) searching and taxonomy to read

 However, many reads may be placed at a high taxonomic level (e.g. phylum or
family) because they are conserved across genomes

* Increasing genomes results in more reads being pushed to higher levels

* Brackenis run after Kraken to improve estimates of species abundance in a

sample
, M tubercuI05|s_ Kraken
— M tuberculosis complex-{
| M bOV'S—

R— True number
. 5 .
Mycobacterium —M avium complex M avium.
_e—0[ =

M marinum S
Lu, 2017

—




Big question: Which is best?

* Difficult to assess comparisons between tools
— Often different (and often changing) databases
— Choice of testing dataset (often mock/simulated communities)
— Choice of tool options/cutoffs
— Depends who you ask ©
— Underlying differences in approaches



Metaphlan3 vs Kraken 2 Comparison

* Explored the effect of database size and tool parameters

Proportion of taxa
covered by database

Proportion of reads
covered by database

NCBI RefSeq Complete V205 -
0.991/0.989 0.999/0.994
GTDB r202 bacteria/archaea | | ‘ J° an- | ’ | ‘
+ NCBI RefSeq V205 other domains i + '_{
0.722/0.718 0.831/0.827
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ChocoPhlAn 3 - Ft—+ o+ At ettt N S et
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MiniKraken2 V2 - ———— e : | N bl
0.483/0.501 0.62/0.608
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion Proportion

1, 189GB/466GB/4GB
108,257 taxa
227,889 genomes

1,148GB
59,472 taxa
72,244 genomes

308GB
113,002 taxa

73GB
13,475 taxa
132,661 genomes

51GB
15,897 taxa
32,409 genomes

8GB
5,758 taxa

Wright, Comeau & Langille (preprint & in review) From defaults to databases: parameter and database choice dramatically impact the

performance of metagenomic taxonomic classification tools
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Kraken2 Confidence threshold

A Precision, recall and F1 score
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Proportion
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Wright, Comeau & Langille (preprint) From defaults to databases: parameter and database choice dramatically impact the
performance of metagenomic taxonomic classification tools



Kraken2 Confidence threshold

B Reads or taxa classified and alpha-diversity

Dissimilarity in number of Dissimilarity in Shannon
Proportion of reads classified species identified diversity
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Wright, Comeau & Langille (preprint) From defaults to databases: parameter and database choice dramatically impact the
performance of metagenomic taxonomic classification tools



Kraken2 vs MetaPhlAn 3

Proportion of reads classified

Dissimilarity in number of
species identified

Mean F1 score
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Wright, Comeau & Langille (preprint) From defaults to databases: parameter and database choice dramatically impact the

performance of metagenomic

taxonomic classification tools




Comparison Summary
* Metaphlan3

— Fast & low computational requirements,

— Simple bioinformatic setup (default db and parameters are good)
— Good for human microbiome studies

— Good precision (at the cost of some recall)

e Kraken2

— Good for human AND environmental microbiome studies
— Confidence cutoff should be changed from default (~0.5)

— Use as big a database as your computational resources allow
(database size equates to amount of memory required)



Metagenomic assembled genomes
(MAGS)

p——
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Assembled Reads Binned Reads

Credit to Dr. Laura A Hug @ University of Waterloo,
for slides, images, and content in this section



Assembly

Assembly is the process of generating longer sequence
fragments based on read overlaps

Sequencing strategies and assembly approaches are
closely linked

— Short reads
— Long reads
— Linked reads (i.e. 10X)

Many assembly methods (MetaSpades, MEGAHIT, etc,)



Assembling contigs and scaffolds using
paired-end reads

BN _ N _—_— - - - . - e
Sequence = — 3 N __ 31 B ¥

_—— . - - . I — 1=ng == o=y
reads - = r— == S . . —_ e S——

v

v

Scaffolds

Contigs _— e—

Read pair Read pair Read pair



Long Reads

* Long read sequencing becoming increasingly popular

 Two approaches

— Oxford Nanopore (Minlon)
* Very long reads (100kb to even mb!)
* Low infrastructure cost

— Pacific Biosystems (Pacbio)
* High throughput

* Improved accuracy due to “HiFi” reads (e.g. circular consensus
seguencing)



Assembly Metrics

* How “good” is my assembly

* MetaQUAST measures assembly quality with several
metrics
— Total length (more is usually better...to a point)
— Total number of contigs (fewer usually better)
— Largest contig

— N50: 50% of the data is within a fragment of this length or
greater (bigger is better)



N50

10 | 70 | e | 5 | 50 | 40 | 30 |

1a. Contigs, sorted according to their lengths.

100 70 60 | 50 | 50 | 40 | 30 |
200 "l
400 -

1b. Calculation of N50 using sorted contigs.

Fig. 1. Example of calculating N50 for a set of seven contigs.
Here N50 equals 60 kbp.

https://www.molecularecologist.com/2017/03/29/whats-n50/



Co-assemble or not?

* Co-assembly is the process of combining sequences from
multiple samples before assembling

* Advantage

— More sequence data so likely better assemblies

e Disadvantage

— Could result in chimeric assemblies



Assembly Example

* Assembly of “simple”

associated with a

100%-

100%-

Whole Assembly

bacterial community ' l Helomonas
> o > o Devosia
S 0% & eoul Tranquillimonas
. ;{ sl ;{ n Tenacibaculum
unicellular eukaryote < L W Thalassospira
2 o £ wow B Marinobacter
E 30% E 30%]
MiSeq ul_:’acBio
16S V1-V3 full 16S
O 2dU d C 0 PDI1C > Olg 2dl c J
ela>rPAQE : 2la>PAQe e e
Total number of contigs 2,357 2,301 605 46 107
Total Length (Mbp) 21.6 21.5 23.8 23.0 24.5
Contig N50 (bp) 49,951 39,388 277,084 4,078,445 | 4,095,409
Largest contig (bp) 669,622 460,209 2,397,197 4,565,899 | 4,572,073

(Filloramo, unpublished)




Binning

* Binning
— Group (or bin) assembled fragments back into their original
genome
— Generate population-level draft genomes

— Called metagenome assembled genomes (MAGs)

* Binning methods use one or more of the following characteristics:
— Nucleotide Composition
— Phylogenetic affiliation of genes

— Coverage information



Binning

3 N
I
[ACGGICTACTGCATGAC
ACGGCTACTGCATGAC
AdGGCTACTGCATGAC

|

oligo nt | frequency

ACGG 0.027
ACGC 0.013
ACGT 0.002

Nucleotide composition




Binning

4 ~

o

l reference genome set

Kingdom; Phylum; Class; Order

Bacteria; Proteobacteria; Deltaproteobacteria; Desulfuromonadales

— _/

Phylogenetic affiliation of scaffolds and/or genes

scaffold 1 scaffold 2

gene A Geobacter gene A Firmicutes
gene B Geobacter gene B Chloroflexi
gene C Deltaproteobacteria gene C no hit

gene D Geobacter gene D Cyanobacteria



Binning serial samples

Scaffold Coverage
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Sequential samples (e.g., time series, depth series)

emm=Scaffold 1
Scaffold 2
e Scaffold 3

em——Scaffold 4




Binning Tools
MaxBin2

PCA2

MetaBat

TetraNucleotides Frequency Abundance
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MAG Quality

Assessing MAG quality is essential!

Most popular approach is to use single-copy genes

Completeness

— ldentifies the percentage of single copy genes present in your
bin

Redundancy/Contamination

— An approximation of what portion of genome is in more than
one copy which suggests redundancy



What is this MAG?

Several approaches to assign taxonomy to each bin

Approach depends on novelty of the organism and time
you want to spend

Good balance of throughput and approach GTDBtk

Genome Taxonomy Database (tool kit)



MAG Quality Examples

GTDB CheckM
classification classification

Escherichia coli f _Enterobacteriaceae
Sutterella wadsworthensis p__Proteobacteria
Sutterella wadsworthensis_A p__Proteobacteria
Parasutterella excrementihominis p__Proteobacteria

Odoribacter splanchnicus k_ Bacteria

Completeness (%)

58.71

EContamination (%)

292
3.45
1.02

0.65

)
2 o
= n
N 5 )
o o - g
£ - 8 O
] g o -
c bt c o
Q o) N
O H* - 2
1327 20758 3071
22 676 34340 4978
1.81 698 46258 2919
2.2 800 28238 3205
75 i 12457 2086




Questions?



