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Module 6
Metatranscriptomics

John Parkinson



Chickens!

Research in the Parkinson-Lab

Pathogen:host:microbiome interactions

Microbiome and malnutrition in pregnancy

Pediatric IBD – eukaryotic microbiome



Learning Objectives of Module
At the end of this module the student will have an 
appreciation of the opportunities and challenges of 
metatranscriptomics by:

• Understanding the capabilities of metatranscriptomics
• Gaining an appreciation of sample collection and 

experimental design
• Learning important steps in data processing
• Processing a simple metatranscriptomic dataset



Overview
• Metatranscriptomics – what is it and why use it?
• Experimental design, sample collection and preparation
• Processing of reads

– Filtering
– Assembly
– Functional annotation
– Taxonomic annotation

• Statistical analysis
• Visualization and Interpretation



Frank et al Cell Host Microbe 2008 / The human microbiome consortium Nature 2012/ Xiong et al PLoS ONE 2012

Metagenomics and metatranscriptomics reveal function 
16S rRNA surveys (“Who is there?”) have been 
widely applied but yield only limited mechanistic 
insights – cause or consequence?

Metagenomics (“What can they do?”) 
have revealed dramatic differences in 
community composition but with 
conserved microbiome functions

Metatranscriptomics 
(“Who is doing what?”)
examines microbiome 
activity



Metatranscriptomics exploits RNA-Seq to determine which genes and pathways 
are being actively expressed within a community

Metatranscriptomics can 
reveal active functions 

It can also reveal which taxa 
are responsible for the 
active functions

Metatranscriptomics focuses on community activity

Genes involved in pathways associated with 
cell wall biogenesis from microbes in the 

chicken ceca

Genes upregulated in presence of antibiotics shown 
as red arrows



Metatranscriptomics applied to a model of obesity

Perilipin2 (Plin2) interacts with 
lipid droplets and helps 
regulate lipid uptake 

Deletion of Plin2 in mice 
largely abrogates deleterious 
effects of a high fat (HF) diet

What impact does Plin2-KO 
have on microbiome function?

Diet

Genotype

Wild type Plin2-KO

Najt et al 
Biochemistry 
2014

RNA-Seq
20-30 million sequence reads/mouse



Under a high fat diet metatranscriptomics reveals no 
differences in microbiome composition 

While changes in diet 
(low fat v high fat) result 
in significant shifts in taxa 
abundance, under a high 
fat diet, there were no 
significant differences in 
composition between the 
Plin2 Knockout mice and 
WT

Xiong et al Microbiome 2017

Distribution of Taxa
(n=4; 20-30 million reads/sample)



Similar microbiomes can express different functions

Under a high fat diet, Plin2 and WT mice exhibit genotype-specific 
differential expression of over 1000 highly expressed microbial genes 
despite similar taxonomic composition!

Xiong et al Microbiome 2017

Differentially 
expressed enzymes

Energy 
Metabolism

Amino acid 
metabolism

KEGG Pathways

Many of these differentially 
expressed genes are associated 
with amino acid metabolism and 
energy metabolism



Pathway analyses reveal potential impact of host genotype on 
microbial gene expression

Mapping of expression differences in a 
pathway context, reveal enzymes 
performing consecutive reactions in the 
production of pyruvate, exhibit 
consistent down regulation in Plin2 mice

Glycolysis



Are energy producing pathways down-regulated due
to accumulation of triglycerides under a high fat diet? 

triglycerides Plin2

Lipid
droplet

Energy

triglycerides

Lipid
droplet

Energy

“Biomass 
metabolites”

Wild 
type

Plin2-
KO

HostMicrobiome



Other Examples of Applications of Metatranscriptomics

Soil microbiomes were monitored by 
metagenomics, metatranscriptomics & 
proteomics, only taxa which expressed arsM
genes were targeted for isolation (presence NOT 
sufficient)    

Applying metatranscriptomics to IBD samples 
found:
• Specific taxa providing unique pathway 

expression (glucoronate conversions by F. 
prausnitzii)

• Taxa that are abundant but not active 
(Dialista invisus)

• Important pathways can be contributed by 
different taxa



Recovery of RNA Viral Genomes

During assembly of metatranscriptomic datasets, assembly algorithms do 
a great job of recapitulating entire RNA viral genomes – here from mouse 
cecal samples

assemble
genomes

Viral sequence of alignment

Metatranscriptomics has 
been applied in this way to 
monitor RNA viral burdens 
in e.g. wastewater



Metatranscriptomics is similar 
to single organism RNA-Seq

Typically applied to organisms 
with a reference (sequenced) 
genome, microbiome 
applications of RNASeq
require specialized tools and 
approaches

Extract RNA Fragment
and sequence

Species A
Species B

Species C
Species D

Align reads to known 
transcripts

Gene A1
Gene A2
Gene A3
Gene A4
Gene B1
Gene B2
Gene B3
Gene C1

Gene D1

6
3
3
1
2
2
6
4

2

Metatranscriptomics through RNA-Seq

Digital readout of 
bacterial gene 
expression



Metatranscriptomics: Challenges

Microbiome samples face additional challenges
- compared to DNA, RNA is very unstable
- lack of polyA tails / host contamination
- complex datasets composed of hundreds of millions/billions of 

sequences
- depth of sequencing
- lack of reference sequences

In a typical RNA-Seq experiment applied to a single eukaryotic organism, mRNA is 
isolated through polyA binding. After fragmentation and sequencing, reads are 
mapped to a reference genome using standard software to provide yield a readout 
on the relative abundance of the transcript



A typical metatranscriptomic analytical pipeline

1. Obtain RNA

2. Prep for 
sequencing

3. Generate 
Reads

4. Remove 
low quality

5. Remove 
rRNA reads

6. Remove 
host reads

7. Identify 
bacterial 
transcript

Gene B

Gene A
8. Map to 
pathways

9. Sample 
comparisons

7. Assemble

Gene D

Gene C



1. Sample collection and RNA extraction
Unlike DNA, RNA quality deteriorates rapidly – Method of storage and 
preparation can impact taxa recovered. While best practice is to process 
immediately to extract RNA then store at -80 or (next best) snap freeze in 
liquid nitrogen and store at -80, sometimes we can’t do that…

Zymoresearch

DNA/RNA Shield 
Fecal Collection Tube 

DNAGenoTek

OMNIgene GUT
Released May 2022?

Avoid use of RNALater – it lyses some cells and can interfere with RNA extraction kits

Norgen

Stool Nucleic Acid 
Collection and 
Preservation Tubes



1. Sample collection and RNA extraction

ZymoresearchNorgen

With Shield Without Shield

DNAGenoTek



1. Sample collection and RNA extraction

Metatranscriptomics is expensive
mainly due to library preparation

Cost per sample 
(40 million reads)

~$300-$400

“At least 4!” (depends 
on nature of samples)

Lack of reference sets 
make power analyses 
challenging

How many replicates?



2. Preparing sample for sequencing

Once RNA has been extracted, several kits are available to remove 
rRNA – need 500ng-2.5ug RNA/sample

Ribo-Zero (Illumina) provides
reasonable success

Bacterial mRNA’s lack a polyA tail so how to remove abundant rRNA species?

Host mRNAs can also prove challenging – can also be informative!

Naïve mouse 
ceca

Parasite-infected 
mouse ceca

NEB rRNA depletion kits 
(mammalian + bacterial)



2. Spike in to quantify read abundance

ZYMO high microbial load spike-
in

The spike-in consists of two 
species: Imtechella halotolerans
and Allobacillus halotolerans, 
totaling 4 x 10^7 cells. 

Tested on Cecal, Ileal and Jejunum 
samples from Chickens

Typical microbiome experiments yield only ‘relative abundance’ data 
which can yield misleading results – ‘absolute abundance’ requires 
quantification of bacterial cells in initial sample (e.g. CFU counts, Flow 
Cytometry, spike in’s)



Decrease in 
Bacteroidaceae
at 24 days post 
hatch? 

No change in 
Bacteroidaceae
at 24 days post 
hatch 

Relative abundance

Absolute abundance

2. Absolute abundance analyses alter results

Relative abundance

Absolute abundance

Accounting for absolute abundance alters taxa 
detected as significantly abundant – will impact 
significantly differentially expressed genes too



3. Generating reads

How many reads are “enough”?
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~5 million mRNA reads provide 90-95% of 
enzymes (ECs) in a microbiome
With kits yielding mRNA read rates of ~25%, 
this suggests 20 million/sample mRNA

While PacBio and MiSeq
provide long reads: great 
for metagenomics, 
Metatranscriptomics
requires large numbers of 
reads - Novoseq



4. Analysing the data

Metatranscriptomics is a relatively new field requiring robust tools and 
pipelines to process and analyse – (SAMSA2 / HUMAnN3 and MetaPro)

Due to their size (billions of sequence reads) – compute clusters are key



Read processing - filtering

To identify reads derived 
from mRNA bioinformatics 
pipelines need to be in 
place that remove 
contaminating reads:

Low quality - Trimmomatic
Adaptors – Trimmomatic
Host – BWA / BLAT
rRNA – BLAT / Infernal

Of these Infernal is the 
most time consuming but is 
considerably more sensitive 
than sortmeRNA

Jiang et al Microbiome 2016
Xiong et al Microbiome 2017



Comparing pipelines
Several pipelines are available for processing metatranscriptomic datasets
- e.g. MetaPro, HUMAnN3 and SAMSA2

You could also build your own!



Comparing pipelines
Several pipelines are available for processing metatranscriptomic datasets
- e.g. MetaPro, HUMAnN3 and SAMSA2
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Read processing - Assembly

Chimera’s, misassembled contigs, can become a problem due to reads 
derived from orthologs from different species 

Assembly improves 
annotation accuracy

Here we use SPADes followed by 
MetaGeneMark to identify 
separate ORFs in transcripts that 
may represent operons

attagcggcgattttcggcgatcttatcttgatctgggcgcgtatcggtagcgtagcgattcgtagc
attagcggcgattttcggcgatcttatcttgatctgggcgcgtatcggtagcgtagcgattcgtagc
attagcggcgattttcggcgatcttatcttgatctgggcgcgtatcggtagcgtagcgattcgtagc

contig1 contig2



Read processing – Annotating to genes

Functional annotations rely 
on sequence similarity 
searches 

BWA -> Fastest, strict
BLAT -> Fast, less strict
DIAMOND -> Slow, sensitive

Every time a 
new strain is 
sequenced, 
new genes are 
discovered

2010 2015 2022

As the number of reference genomes increases, 
the amount of memory to perform BWA 
searches increases

Large memory compute clusters (100’s Gb RAM)
Software solutions (splitting databases)



Custom databases can be faster and more accurate

0

10,000

20,000

30,000

40,000

50,000

Number of alignments from 100,000 
reads

Instead of searching against all genomes, a more appropriate subset can reduce 
search times

Here we compare the performance of a dataset of ~500 genomes assembled 
from the cecal microbiome of chickens (1.1 Gb) with two versions of the 
ChocoPhlan Database used by HUMAnN (19Gb & 66Gb). The smaller, focused. 
database runs 100x faster than C3.

Cecal 
genomes C2 C3

Cecal 
genomes C2 C3

Quality of alignments



Read processing – annotating to genes

BWA works at the level 
of nucleotide 
sequences and requires 
precise matches – can 
be challenging for 
undersampled samples

DIAMOND/BLAST can 
work at the level of 
protein sequence, 
allowing flexibility at 
the nucleotide level

Level of annotation dependent on previous sampling of the 
niche explored

Even with DIAMOND/BLAST many reads remain unannotated



Quality of BLASTX matches

55 60 65 70 75 80 85 90 95 100
35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.1
55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.3
60 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.5 0.7 1.6
65 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.9 1.3 1.5
70 0.0 0.0 0.0 0.1 0.1 0.3 0.3 2.2 1.6 1.7
75 0.0 0.0 0.1 0.2 0.3 0.4 0.5 1.6 3.8 2.0
80 0.0 0.0 0.0 0.3 0.5 0.5 0.5 1.7 2.4 4.9
85 0.0 0.0 0.1 0.5 0.9 1.1 0.8 1.8 2.7 3.3
90 0.0 0.0 0.2 0.9 0.6 0.6 1.7 1.9 3.3 4.0
95 0.1 0.1 0.2 0.8 0.6 0.6 0.7 1.9 3.7 4.8
100 0.1 0.2 0.3 0.6 0.7 0.7 1.3 2.9 8.6 12.1

Typical match to a 71bp read E-Value = 39 (NOT e-39)

Species looks about
right though

% of Read Length

% ID of match

Summary for 
all matches



Read processing – converting mappings to expression

To normalize expression levels to account for differences in gene length, read 
counts are converted to Reads per kilobase of transcript mapped (RPKM)

#
8

8
24

RPKM
1

12
6

Expression is biased for gene length (longer transcripts 
should have more reads) to normalize, reads are converted 
to Reads per Kilobase of transcript per million reads 
mapped

RPKMgeneA = 109 CgeneA / NL

CgeneA = number of reads mapped to geneA
N = total number of reads
L = length of transcript in units of Kb

Several software tools available to do mapping and calculate normalized 
expression (Bowtie and Cufflinks) or can be included as a simple calculation in 
your pipeline



Read processing – taxonomic annotation

Previous studies have shown that microbiomes 
can vary significantly in taxonomic contributions 
while yielding similar functionality

The human microbiome consortium 2012
How do we assign taxonomic information?

Knowing which species are providing which functions may not be that important -
On the other hand, assigning RNA reads to taxa may reveal critical functions 
contributed by keystone taxa, can also help in binning for assembly



Read processing – taxonomic annotation

Alignment based methods such as BWA and DIAMOND can fail where we 
lack suitable reference genomes – particularly for short read datasets 
where assignments may be ambiguous

Compositional methods (e.g. nt frequency, codon bias) offer alternative 
strategies

ATGCAGTAC...

n = 3:
ATG

TGC

GCA
CAG

AGT

GTA

TAC

AAA AAC AAG AAT ... TTT

Here a sequences is 
classified into 
frequencies of 3-mers

Nearest neighbours 
methods then try to 
assign a sequence to 
the genome with the 
closest distribution

Kaiju - 2016

NBC - 2011

KRAKEN – 2014
KRAKEN2 - 2019

Centrifuge - 2016



MetaPro employs “majority voting” for taxonomic classification 

Different tools exhibit a range of sensitivity and recall. MetaPro 
combines results from three classifiers (DIAMOND searches, 
Kaiju and Centrifuge) to perform taxonomic assignments 



16S rRNA survey data and Metatranscriptomic data share similar, but 
not identical, taxonomic profiles



16S rRNA survey data and Metatranscriptomic data share similar, but 
not identical, taxonomic profiles

Groups of bacteria – present but 
apparently not active



16S rRNA survey data and Metatranscriptomic data share similar, but 
not identical, taxonomic profiles

Other taxa (e.g. Lachnospiraceae) may not 
be abundant but appear very active



16S rRNA survey data and Metatranscriptomic data share similar, but 
not identical, taxonomic profiles

A recent study comparing metagenome 
and metatranscriptome data from 
vaginal swab samples also found 
differences between metagenomic and 
metatranscriptomic profiles

Metatranscriptomic data more 
reflective of future abundance

Given DNA is slow to degrade, does 
RNA provide a more accurate reflection 
of community abundance?



EggNOG provides mappings 
to Gene Ontology (GO), 
KEGG enzymes, KEGG 
modules, CAZy

GO terms can be 
challenging to summarize…

Functional Annotation

BinGO plug in for cytoscape can help 
interpretation of GO annotations

Once reads have been assigned to transcripts, transcripts may already 
be annotated with functions – otherwise annotations can be generated 
through mapping to annotated orthologs



Functional Annotation

Protein 
complexes

Genes and proteins do 
not operate in isolation 

but form parts of 
interconnected 

functional modules

Beyond focusing on broad functional categories, we can also start to 
undertake systems based analyses

By placing a bacterial transcripts within these 
functional contexts, we can understand how 

the microbiome functions at a molecular level

Metabolic 
pathways

Signalling
networks



Functional Annotation – metabolic reconstructions
MG-RAST uses the SEED framework, an alternative set 

of functional annotations; allows visualization of 
metabolic pathways for example

OLD!

NEW!

Gapseq identifies enzymes and 
builds complete metabolic 

reconstructions – can be used 
for metabolic modeling!



Functional Annotation – metabolic modeling

Metabolic modeling tools offer routes to understanding microbial 
community dynamics and predict production of key metabolites



Visualizing results
Metabolic network of a mouse 

gut microbiome

The interconversion of fructose-
1,6 bisphosphate to 

glyceraldehyde 3-phosphate is 
largely mediated by bacteroides

Piecharts indicate 
relative contribution 
of each taxon to an 
enzymatic activity

Visualization of metabolic 
pathways can performed using 
Cytoscape – a generally useful 
network visualization tool!



Functional annotation – Cell wall biogenesis

Beyond metabolism, other 
‘systems’-type datasets can be 
leveraged to help interpret 
datasets

Here we map 
metatranscriptomic reads onto 
a protein interaction network 
generated for genes involved 
in cell wall biogenesis in E. coli

However E. coli does not 
represent all bacteria – do we 
need maps for e.g. Gram +ve’s
or (better) a generic map of 
‘bacterial systems’?



Functional annotation – Iron uptake and storage

Previously we showed that iron supplements can promote colonization by parasites and 
bacterial dysbiosis in the gut

Applying metatranscriptomics to a mouse infection model, we used FeGenie to identify 
genes associated with iron uptake / storage systems

Bacteria in the gut of mice infected with the protozoan parasite – Tritrichomonas musculis
– increased expression of iron uptake / iron storage systems

Is upregulation an attempt to maintain status quo? or an attempt by bacteria to 
compromise the parasite?



In our chicken studies, we were 
interested in the impact of 
antibiotic growth promotants
(AGPs) on AMR gene expression

Using the CARD database 
(McMaster) we identified 
samples exposed to AGPs 
exhibited a significant 
upregulation in AMR gene 
expression

Metatranscriptomic datasets are 
rich in information that we are 
only scratching the surface of

Quorum sensing
Biofilm machinery
Secretion systems
….

Functional annotation – AMR



Analysing the data – differentially expressed genes

Established RNASeq Tools such as DESeq2 and EdgeR provide platforms to identify 
differentially expressed genes for subsequent gene set enrichment analyses

Pathway (enzymes)
Enzymes
expressed

#Enzymes
differentially
expressed

Average fold
change

Hypergeometric tests of differentially expressed genes associated with KEGG 
pathways can identify metabolic pathways exhbiting differential expression (here 
comparing Plin2-KO and WT mice fed a high fat diet)



Normalizing for taxon/gene abundance

• DESeq2 developed for single 
organism RNASeq – for 
metatranscriptomics DESeq2 is 
prone to false positives, 

• Alternative methods? - Aldex2, 
Ancom

Zhang et al Bioinformatics 2021



Normalizing for taxon/gene abundance

Zhang et al Bioinformatics 2021

‘Taxon-specific scaling’ normalization 
approximately transforms a MTX 
dataset into an aggregate of single-
organism RNA-seq datasets

When samples are profiled with 
paired MTX and MGX sequencing, a 
gene’s RNA abundance can be 
normalized by its DNA abundance

Zhang et al recently performed a 
systematic analysis of six different 
linear models showing enhanced 
performance of abundance 
normalization relative to naïve RNA



Analysing the data

PCA plots can be applied to identify clustering of samples

PERMANOVA identifies statistical differences across samples (here 
mice fed different diets with different genotypes have similar 
taxonomic distributions; mice fed a high fat diet exhibit genotype 
driven differences in enzyme expression)


