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ABSTRACT Better interrogation of antimicrobial resistance requires new approaches to
detect the associated genes in metagenomic samples. Targeted enrichment is an ideal
method for their sequencing and characterization. However, no open-source, up-to-date
hybridization probe set targeting antimicrobial resistance genes exists. Here, we describe
the Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM), a probe
design software package made to run alongside all future Comprehensive Antibiotic
Resistance Database releases. To test its efficacy, we have created and tested two
separate probe sets: allCARD, which enriches all genes encoded in the Comprehensive
Antibiotic Resistance Database’s protein homolog models (n = 4,661), and clinical CARD,
which focuses on a clinically relevant subset of resistance genes (n = 323). We dem-
onstrate that allCARD increases the number of reads mapping to resistance genes
by up to 594-fold. clinicalCARD performs similarly when clinically relevant genes are
present, increasing the number of resistance-gene mapping reads by up to 598-fold.
In parallel with this development, we have established a protocol to synthesize any
probe set in-house, saving up to 350 dollars per reaction. Together, these probe sets,
their associated design program CARPDM, and the protocol for in-house synthesis
will democratize metagenomic resistome analyses, allowing researchers access to a
cost-effective and efficient means to explore the antibiotic resistome.

IMPORTANCE Antimicrobial resistance threatens to undermine all modern medicine
and is driven by the spread of antimicrobial resistance genes among pathogens,
environments, patients, and animals. DNA sequencing of complex samples, such as
wastewater, shows considerable promise for tracking these genes and making risk
assessments. However, these methods suffer from high costs and low detection limits,
plus a requirement for frequent redesign due to the constantly evolving diversity of
resistance genes. Building upon our Comprehensive Antibiotic Resistance Database,
our research provides software for on-demand renewal, based on the latest knowl-
edge of resistance gene diversity, of our novel bait-capture hybridization platform
that simultaneously reduces cost and increases detection levels for DNA sequencing
of complex samples. The significance of our research is in the development of new
software tools, reagent synthesis protocols, and hybridization enrichment protocols to
provide affordable, high-resolution metagenomics DNA sequencing, which we test using
environmental and wastewater samples.
KEYWORDS antimicrobial resistance, sequencing, metagenomics, target enrichment
A ntimicrobial resistance (AMR) is a growing and global problem. In 2019, AMR was
estimated to be directly responsible for 1.27 M deaths (1). By 2050, this number may
be as high as 10 M (2). Most of this impact is and will continue to be in regions least
equipped to combat it, largely due to a lack of resources (1). Therefore, it is imperative
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that we devise cost-effective solutions to address AMR more effectively and equitably.
Bacterial evolution has been marked by the arms race of antibiotics and their
associated resistance genes, providing a competitive edge to their producers (3-8). This
struggle is revealed in the vast reservoir of antimicrobial resistance genes (ARGs) in
environmental microbes, requiring only mobilization through horizontal gene transfer
to be effective against any treatment we deploy (9-12). Therefore, to better combat
AMR emergence, we need to improve how we detect the full complement of ARGs
(i.e., the resistome [13]) in environmental and other reservoirs. Attractive monitoring
targets are environments such as wastewater, a fertile ground for genetic exchange
between bacteria (5) that provides a snapshot of ARG prevalence in the community
(14-20). Natural environments, such as soils, rivers, and farms, are known reservoirs of
ARGs, many with the potential to mobilize into pathogens (21-25). Finally, profiling the
resistome of human and animal microbiomes allows us to identify critical determinants
in the spread of resistance within and between these two groups (26, 27).

Investigating these rich data sources requires methods to characterize their resistome.
Several techniques exist that may fill this niche, each with its limitations. PCR, for
example, is commonly used to detect ARGs in Mycobacterium tuberculosis isolates (28).
While useful for a small, targeted set of genes, the Comprehensive Antibiotic Resistance
Database (CARD) (29) hosts over 5,000 resistance determinants, an untenable number
for PCR methods. Furthermore, because of the specificity of PCR, there is little chance
of detecting distantly related genes, as a single nucleotide substitution may eliminate
any signal from the assay. Finally, even if one detects a novel sequence variant by
PCR, without follow-up amplicon sequencing, there is no way to identify it. This makes
phylogenetic tracking of the spread of AMR far more difficult.

Shotgun DNA sequencing can detect all the genes in a sample given sufficient depth.
Groups have used this method to characterize environmental (25, 30) and worldwide
wastewater (14, 15) resistomes. A limitation of this technique is that all ARGs in a
metagenomic sample typically represent <1% of the total DNA, even in samples where
they are highly abundant, such as wastewater. Individual ARGs may be several orders
of magnitude less than that in abundance. For example, a single 1 kb ARG that makes
up 1 X 107°% of the DNA in a sample would require 10 Gbp of sequence data to obtain
10-fold coverage of the ARG. Performing this work on a NextSeq 2,000 would cost over
USD$1,500. As such, while deep sequencing can be used to characterize metagenomic
resistomes, it entails a high cost per sample, most of which will be spent sequencing
background DNA. The associated volume of data also increases equipment costs and
computing power needed to parse the data, further constraining this technique’s use in
resource-limited settings (31).

Targeted enrichment is a modification to shotgun sequencing that allows robust
detection of a broad range of specific, low-abundance targets with less sequencing. In
this protocol, DNA from a sequencing library is denatured, allowing biotinylated RNA
“probes” complementary to a set of target sequences to hybridize (32, 33). Streptavidin-
coated magnetic beads capture these biotinylated RNA probes and their complementary
DNA partners from the background (Fig. 1). This process increases the proportion of the
target DNA in a library, allowing one to sequence less yet detect more.

A probe-capture protocol is ideal for detecting thousands of ARGs with a fraction of
the sequencing required by brute-force shotgun approaches. However, two challenges
exist for the probe-capture strategy in the AMR space. First, there is no up-to-date and
open-source AMR probe set, as the most recent was designed against only 2,021 ARGs
from CARD v1.0.1, released in 2015 (34). The second is that the cost of probes from
commercial suppliers can be up to $350 per reaction, diminishing cost savings relative to
shotgun sequencing. To address the first of these challenges, we have written a software
package—the Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM)—
to generate a stringently filtered probe set with minimal off-target enrichment from
the CARD v3.2.5 protein homolog model (allCARD) ARGs. This software package will
run alongside all new releases of CARD, ensuring there is always an open-source and
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FIG 1 Targeted enrichment workflow. Magnetic streptavidin beads are used to bind biotinylated RNA molecules, which are, in turn, attached to a complemen-
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tary DNA partner. One can considerably bias the resulting library toward a target fraction by pelleting the beads and washing away the background before
amplification and sequencing.

up-to-date probe set to enrich ARGs from any sample. We also curated a list of 323
clinically relevant ARGs and generated a smaller probe set (clinical CARD) with the same
program, providing a more focused alternative to the allCARD probe set, as the full
complement of ARGs may not be necessary for many projects in healthcare settings.
To address the cost of commercial probes, we have developed a protocol that allows
in-house synthesis of any probe set from a Twist Biosciences oligo-pool. With this
strategy, researchers can synthesize thousands of reactions worth of any probe set for a
one-time fee lower than that of a typical 16-reaction kit from a commercial supplier.

To test our probe sets and in-house synthesis of probes, five conditions were tested
on two wastewater and three soil samples in duplicate, comparing enrichment via
the 2015 CARD v1.0.1 (34), allCARD, clinicalCARD probe sets to sequencing without
enrichment, plus examination of the comparative performance of commercially supplied
probes, and probes synthesized using our new protocol. We demonstrate that our
in-house synthesized probe set detected more ARGs with the same amount of sequenc-
ing on the samples we tested when compared to a commonly used commercial option.
We also illustrate CARPDM'’s capability as a probe design platform by testing allCARD
and clinicalCARD probe sets on wastewater and soil samples. We found that allCARD
detects far more ARGs than the probe set generated against CARD v1.0.1 (34). Finally, we
show that clinical CARD detects clinically relevant ARGs with less sequencing and better
coverage than allCARD.

MATERIALS AND METHODS
ARG selection for allCARD

Only ARGs curated as protein homolog models were included from CARD v3.2.5 (n =
4,661), as these ARGs do not confer resistance via the acquisition of mutations (i.e.,
CARD’s protein variant models). Including mutation-based ARGs in the design would
enrich wild-type alleles, as enrichment probes can readily hybridize over a single
mutation, diluting the sequencing effort.
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ARG selection for clinical CARD

The CARD prevalence data v4.0.0 (19) aided in identifying clinically relevant ARGs. This
data set is a collection of 221,175 sequencing assemblies from 377 pathogens with
associated ARGs identified by CARD’s Resistome Gene Identifier (RGI) software (35). These
data include a collection of 21,079 completely sequenced chromosomes and 41,828
completely sequenced plasmids. Preliminary examination of these data illustrated that
the distribution of ARGs was almost binary, i.e., each ARG predominantly occurred in
either plasmids or chromosomes, but not both (Fig. S1). It also showed that ARGs with
a higher occurrence of plasmids were far more likely to be clinically relevant (36-39). As
such, the first list of candidate clinically relevant ARGs included any ARG in CARD with
at least 10 occurrences in plasmids, yielding 237 ARGs. Ten was chosen as a cutoff as it
minimized the false positive inclusion of highly prevalent but clinically irrelevant ARGs
such as species-specific efflux mechanisms. Any ARG with >5% but <95% prevalence
in any ESKAPE pathogen (40, 41) (Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species) was also added to this list, yielding a further 124 ARGs. Finally, 42 ARGs identified
as clinically significant via a literature review were added, as they were included in
publications investigating similar questions (42, 43). Overall, a wide net was cast, erring
on the side of false positives and resulting in a draft set of 403 candidate ARGs. This
set was manually curated based on CARD prevalence data, considering the species
they appeared in, the genomic context (whether it was mobile, i.e., on a plasmid), the
drug classes they impact, the environmental overlap of the host organism with humans,
and the relative risk each host imposed as a pathogen. Our approach was developed
following recent ARG risk frameworks developed for metagenomic data (42, 43). In short,
our manual curation selected for mobile ARGs that confer resistance to antibiotics used
for therapy in humans is present in a human pathogen and is likely to colonize humans
or animals. After curation, 323 ARGs were deemed clinically relevant and included in the
clinical CARD probe set design.

Probe design

CARPDM is written in Python, save for the first step, which employs the program
BaitsTools (44) to tile probe sequences along ARG sequences. Probes designed by
CARPDM have an 80 nt length as per the prior validated ARG bait set for CARD v1.0.1.
This is also an ideal size for adding amplification primers while remaining below the 120
nt cut-off for the base level of a Twist oligo-pool if synthesizing probes in-house. The
probes also have an extremely high density before filtering, with a tiling distance of 4 nt
along ARG nucleotide sequences. This increases redundancy in the probe set and makes
it more robust against stringent downstream filtering. As input, the allCARD design used
all 4,661 CARD v3.2.5 protein homolog model ARGs, while clinical CARD’s design used the
curated 323 clinically relevant ARGs.

There are three filtering steps after the initial probe construction (Fig. S2). The first
is a filter based on sequence, in which the probes are deduplicated, confirmed as 80
nt, contain no ambiguous bases, have no perfect complements within the set, have a
Tm > 50°C, and contain no Lgul restriction endonuclease cut sites. The last condition
is essential for the synthesis protocol. Since bacteria are likely to be the most abun-
dant organism in most metagenomic samples (45), the second filter is a BLASTN (46)
search against the nt database to minimize off-target enrichment and remove probes
with >80% identity over <50 nt to any bacterial sequence, as any probe similar to a
bacterial sequence over >50 nt is likely the ARG itself. This filter also removes probes
with >80% similarity over >50 nt to any viral, archaeal, or eukaryotic sequence unless
they match perfectly (i.e, likely sequence contamination by an ARG).

The last filter removes redundancy in the probe set, using BLASTN to compare the
probes against each other. To remove probes that could bind to each other rather
than the target DNA, any probes found to be complementary over the entire 80 nt are
collapsed to a single representative. After removing complementary probes, CARPDM

March 2025 Volume 91 Issue 3

Applied and Environmental Microbiology

10.1128/aem.01876-24 4

Downloaded from https://journals.asm.org/journal/aem on 20 May 2025 by 130.113.155.16.


https://doi.org/10.1128/aem.01876-24

Full-Length Text

determines if the number of probes in the set is below a pre-defined cut-off. For
allCARD, we arbitrarily set this cut-off at 40,000 probes, while for clinicalCARD, it was
set to 20,000 probes. If not below the cut-off, CARPDM collapses probes with 79 nt
of complementarity to a single representative, repeating the process with decreasing
length of complementarity until below the cut-off.

In silico analysis of probe sets

BLASTN (46) was used to compare the probe sets to the ARG sequences. Using
Python and NumPy (47), “target” arrays of zeros were constructed. Each of these arrays
represented a single ARG against which the probeset was designed. After aligning all
probes against the input set of target sequences with BLASTN, arrays of ones (matches)
and zeros (mismatches) were constructed for each probe: target alignment. These arrays
were then added to the corresponding target array at the start position of the alignment.
Repeating this for every probe: target alignment yields the tallied coverage of each
nucleotide position by probes. This coverage array was used to compute summary
statistics.

Probe synthesis

The starting material for the in-house synthesis of probes is a custom oligo pool (Twist
Biosciences, San Francisco, CA). The synthesis scale of the pool ordered will vary based
on the total number of unique probes in the pool. For allCARD, a synthesis scale that
allowed 32,000-36,000 unique sequences was ordered, while for clinical CARD, this scale
was 16,000-20,000. Each unique oligo in this pool’s design contains an individual probe
sequence between two other sequences that are the same across all oligos, such that the
final length is 120 nt. The first of these flanking sequences is a T7 transcription start site
with three extra guanines to reduce transcription efficiency variability (48). The second is
a unique primer sequence chosen by the CARPDM program to minimize the probability
of interactions with the probe sequences of the pool. This primer must contain an Lgul
cut site directly proximal to the unique probe sequence, such that it can be cleaved after
amplification of the pool and before T7 transcription (Fig. S3).

The last part of CARPDM'’s pipeline is to convert the designed probe sequences that
would typically be ordered as a probeset from a commercial supplier into oligo pool
sequences that can be ordered from Twist Biosciences. To do this, CARPDM appends a
T7 transcription start site with three extra guanines to one end of every probe sequence.
It then creates every possible primer with a terminal Lgul cut site of the correct length
to yield a final oligo of 120 nt when appended to the opposite side. It compares these
putative primers to the concatenated T7/probe sequences using BLASTN and selects
the primer with the fewest matches as the second amplification primer, appending
the reverse complement to the opposite side of each probe sequence. The resulting
sequences were ordered as an oligo-pool from Twist Biosciences (San Francisco, CA), and
the amplification primers were ordered from Integrated DNA Technologies (Coralville, I1A).

For probe synthesis, sixteen 50 uL PCRs were conducted in parallel, each with 1 ng
oligo pool input using 0.5 pL Phusion polymerase with HF buffer (Thermo Fisher
Scientific, Waltham, MA), T uM of each primer, and 0.2 mM dNTPs (Thermo Fisher
Scientific, Waltham, MA). Cycling conditions were initial denaturation at 98°C for 30 s,
12 cycles of 98°C for 10 s, 60°C for 30 s, 72°C for 15 s, and final extension at 72°C for
10 m. Reactions were purified with the QIAQuick Nucleotide Removal Kit (Qiagen, Hilden,
Germany), pooling eight reactions per column and eluting each in 30 pL. The elutions
were then pooled, and their concentrations were quantified via Qubit 1x dsDNA HS assay
(Thermo Fisher Scientific, Waltham, MA).

Four 50 pL restriction endonuclease treatments were then performed in parallel, each
with 2 pg PCR input and 2 pL FastDigest Lgul (Thermo Fisher Scientific, Waltham, MA).
These reactions were then incubated at 37°C for 2 hours, followed by heat inactivation
at 65°C for 5 min. Parallel reactions were then pooled over a single Qiagen MinElute PCR
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Purification column (Qiagen, Hilden, Germany), eluted in 10 pL, and quantified via Qubit
1x dsDNA HS assay.

Finally, T7 transcription reactions were performed with up to 1 pg of purified Lgul
digest product, although similar yields were achieved with as little as ~250 ng. For this,
HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, Ipswitch, MA) was used
according to the manufacturer’s instructions, with one-third of the UTP concentration
comprised of Bio-16-UTP (Thermo Fisher Scientific, Waltham, MA). The 20 pL reactions
were incubated for 16 h at 37°C, after which 68 puL RNase-free H,O was added with 10 pL
DNase | Buffer and 2 pL DNase | (New England Biolabs, Ipswitch, MA). The resulting mix
was incubated for 15 m at 37°C, after which the RNA probes were purified using the
Monarch RNA Cleanup kit (50 pg; New England Biolabs, Ipswitch, MA). Finally, concen-
trations were quantified via Nanodrop (Thermo Fisher Scientific, Waltham, MA), and
probes were diluted to 100 ng/uL. One hundred nanograms of each probe set was then
analyzed on a 12.5% Urea-PAGE gel stained with SYBR-Gold (Thermo Fisher Scientific,
Waltham, MA). A successful reaction was indicated by a smeared band of a slightly higher
molecular weight than 80 nt compared to the DNA marker and no remaining band at
120 nt. The probes should appear at a slightly higher molecular weight than 80 nt due to
the incorporation of biotin and the extra molecular weight contribution to RNA molecule
weight from the 2’ hydroxyl group. The smear indicates the successful incorporation
of biotin into the probes depending on uracil content and the inherently stochastic
nature of biotinylated vs non-biotinylated uracil insertion. A 120 nt band would indicate
the remaining oligo pool if present, which should have been removed by the DNase
treatment.

Samples

Two wastewater samples and three soil samples were selected to test the efficacy of
the newly constructed probe sets with sequencing. The wastewater samples were 24 h
aggregate influent samples from the city of Hamilton (Ontario, Canada) Wastewater
Treatment Plant (7 November 2022 and March 2023). DNA was extracted from 50 mL
wastewater samples within 24 h of sampling using the DNeasy PowerWater Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocols, each with an associated
H>0 control. Soil samples were collected from three different environments selected to
represent distinct levels of human impact. The first was taken on 10 June 2016, from
Holman Island in the Northwestern Territories of Canada, a pristine environment with
little human influence. The second was taken on 6 March 2023, from a local wetland in an
urban setting in Hamilton (Ontario, Canada), representing an environment with middling
human impact. The third was taken on 27 February 2023, from a high-traffic pedestrian
area frequented by smokers outside of a Hamilton (Ontario, Canada) hospital, a setting
with heavy human influence. All soil samples were stored at —80°C until processing. DNA
was extracted from 250 mg soil samples using the Qiagen DNeasy Powersoil Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocols alongside an associated
H>0 control.

Sample processing, enrichment, and DNA sequencing

Commercially synthesized probes (CARD v1.0.1 probe set only) and reagents for all
enrichments were purchased from Daicel Arbor Biosciences (Ann Arbor, Ml). In addition,
probes for the allCARD, clinicalCARD, and CARD v1.01 sets were synthesized in-house
as outlined above. While allCARD and clinical CARD probe sets were only synthesized
in-house, commercially synthesized CARD v.1.0.1 probes allowed direct comparison with
the identical CARD v.1.0.1 probe set synthesized in-house.

For each sample, extracted DNA was quantified via NanoDrop (Thermo Fisher
Scientific, Waltham, MA), diluted, and sonicated to an average size of 400 bp using
Covaris G-tubes (Woburn, MA). From this, libraries were prepared in quadruplicate from
1 ug DNA using the NEBNext Ultra Il ligation kit (New England Biolabs, Ipswich, MA)
according to the manufacturer’s protocols. These libraries were then pooled before
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redistributing to half-size indexing reactions using NEBNext Multiplex Oligos for lllumina
(New England Biolabs, Ipswitch, MA). Sample libraries were then enriched in two
batches. The first batch performed allCARD and clinicalCARD enrichments, while the
second batch performed commercial and in-house CARD v1.0.1 enrichments (Fig. S4). All
enrichments were performed according to the manufacturer’s protocols (version 5.02)
using the Daicel Arbor myBaits v5 kit and reagents in a half-size reaction format with a
24 h hybridization at 62°C, maximum library input, 250 ng of probes, and 14 cycles of
post-enrichment reamplification. In-house probes were diluted with RNase-free water to
the same concentration as Daicel Arbor’s (100 ng/pL) before use in the protocol. Each
enriched library was compared to the same sample without enrichment.

Before sequencing, libraries were quantified in triplicate using NEB Luna Universal
Probe qPCR Master Mix (New England Biolabs, Ipswitch, MA), lllumina PhiX standard (San
Diego, California), and the following primers, all ordered from Integrated DNA Technol-
ogies (Coralville, IA): P5: AATGATACGGCGACCACCGA, P7: CAAGCAGAAGACGGCATACGA,
and probe: /56-FAM/CCCTACACG/ZEN/ACGCTCTTCCGATCT/3IABKFQ/. Cycling conditions
were initial denaturation at 95°C for 3 m, followed by 40 cycles of denaturation at 95°C
for 15 s and annealing/extension at 60°C for T m. The resulting concentrations were used
to make individual pools for each enrichment set above, alongside one replicate of the
shotgun (without enrichment) libraries (Fig. S4). Paired-end reads of 2 x 150 bp were
obtained from each pool using an Illumina NextSeq 2000 (San Diego, California), with
samples having an average depth of 4.47 M clusters sequenced (minimum of 3.26 M
clusters and a maximum of 6.71 M clusters).

Analysis and visualization

All analyses were performed with custom Python scripts and visualized with the
ggplot2 (49) package in R. For rarefaction analysis, libraries were subsampled every
100,000 paired-end reads up to 3 M using seqtk v1.3. Fastp v0.23.2 28 performed
initial read trimming, quality control, and deduplication for these subsamples without
merging. CARD’s RGI bwt v6.0.2 tool with KMA v1.4.9 (50) then mapped reads to
reference sequences in CARD v3.2.5. ARGs were classified as present if they had more
than 100 reads mapping (regardless of the breadth of coverage of the reference
sequence). Regression lines were determined without extrapolation using the ggplot
local estimated scatterplot smoothing function with geom_smooth. Since one cannot
extrapolate a locally estimated function, we used a standard log-linear model when
extrapolating the predicted number of ARGs detected at a sequencing depth of 10 M.
GNU parallel v20161222 (51), the Python pandas v1.5.3 library (52), and BioPython v1.78
(53) were used heavily for these analyses.

For read distribution analysis, custom Python scripts used the CARD RGI bwt output
to count the number of reads that mapped to each ARG in soil and wastewater samples,
respectively. The top 20 most prevalent ARGs (i.e., ARGs with the highest number of
reads mapping) in each sample source (soil and wastewater) were kept for the figure,
while all others were collapsed to the “other” category. This cut-off was chosen to keep
figure legends readable while providing discriminatory power between the performance
of different probe sets. Mean counts of the two replicates are used to determine the
number plotted. The distribution of percent identity between read and reference for
each sample was determined by a custom Python script that parsed the CIGAR strings
in the BAM file that accompanies the RGI bwt output, where the percent identity was
calculated as the number of nucleotide matches/151 x 100. Replicates were pooled for
this analysis.

In a clinicalCARD vs allCARD overlap analysis, a custom Python script determined
clinically relevant ARGs detected by allCARD or clinicalCARD with =100 mapped reads
in both replicates at each subsampling depth. A similar approach was used to deter-
mine the overlap between the in-house vs commercially synthesized CARD v1.01 probe
sets. However, to compare these sets, only ARGs included in the initial design (i.e., in
CARD v1.0.1) were considered. Coverage analysis only considered clinically relevant ARGs
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detected by both clinicalCARD and allCARD with at least one read at a subsampled
sequencing depth of 3 M paired-end reads in both replicates. Python scripts determined
each ARG's coverage using the CARD RGI bwt output from the rarefaction analysis. Once
again, for a similar analysis comparing the commercial and in-house synthesis, only ARGs
from CARD v1.0.1 were considered.

For a wastewater read correlation analysis, only clinically relevant (i.e., in clinical CARD)
ARGs detected with at least one read in both shotgun and enriched in each sample were
considered. All ARGs were included from soil samples, while clinical CARD analysis was
omitted due to the sparsity of detected ARGs. R? values were calculated using scikit-learn
v1.2.2 (54). The cmlA1 read number correction outlined below was accomplished by
summing the number of reads attributed to all closely related cm/A variants (i.e., cmIAT,
4, 5, 6, 8, and 9) in each relevant treatment and manually adding the corresponding
values to the plot.

RESULTS
Probe design and synthesis

After design and filtering, allCARD contained 34,915 unique probe sequences covering
4,661 ARGs. Alternatively, clinical CARD contained 15,393 unique probes, covering 323
ARGs (Fig. S5). No probe set had zero coverage of an ARG against which it was designed.
When analyzing probes against all ARGs curated as CARD protein homolog models (Fig.
2a), the median value of all metrics other than the proportion covered per ARG was
higher in the clinical CARD probe set. The reason for clinical CARD’s bimodal distribution
compared to allCARD is that it was only designed against the clinically relevant subset.
Therefore, the clinically irrelevant genes (e.g., to/C and H-NS) had no probes aligning
since they were not included in the initial design. However, despite only being designed
against 323 ARGs, over 50% of CARD ARGs had coverage of >75% by clinical CARD. When
analyzing both probe sets against the clinically relevant ARGs in clinical CARD (Fig. 2b),
median values in clinical CARD were higher than allCARD in every metric.

Probes Proportion Covered Coverage
HESUIRER per Gene per Gene Std Deviation
a 1.007 -Tr V 10.01
154
200- 0.754 7 .54
10+ 0.50 5.0
100+
57 ‘ 0.25+ 2.54 '
S o A 0 0.00- ﬂ 0.01
gy 1.00 T T |
154
200+ 0.754 6
10+
100 0:501 “
5..
2.
+ ‘ 025 P
O- T T 0- T T T T G T T
all clinical all clinical all clinical all clinical

Designed against

FIG 2 Insilico probe analysis using BLAST to align all probes in allCARD and clinical CARD against (a) all genes in CARD and (b) all genes deemed to be clinically
relevant.
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The increased in silico performance of clinicalCARD is a consequence of the smaller
initial set of reference sequences. As such, it did not have to remove as many probes
during the redundancy filter (Fig. S5a) and ended up with more redundancy and superior
coverage of the ARGs against which it was designed. Probes in clinicalCARD had a
lower median GC content and melting temperature. A higher proportion of probes also
target only a single ARG in clinicalCARD relative to allCARD (Fig. S5b). After synthesis, a
urea-PAGE gel shows a smear above 80 nt due to the stochastic incorporation of biotin
into the probe (Fig. S6). A comparison of all pools against the commercially synthesized
version indicates a similar size distribution, with a slight bias toward lower molecular
weights in the in-house synthesized probe set.

Probe testing

Five samples in five different treatments were employed to determine the efficacy of
the probes when enriching for targets. No blanks had sufficient sequencing depth to
be analyzed at even the lowest subsampling depth, indicating negligible contamination.
First, the non-inferiority of the in-house synthesized probe set relative to the commercial
option was established. After subsampling every 100 k paired-end reads up to 3 M with
analysis by the CARD RGI bwt tool (55), the number of ARGs with >100 mapped reads
was determined for each depth in each sample (Fig. 3). This analysis illustrated that
the in-house synthesized probes detected more ARGs at the same sequencing depth in
every sample. This effect was more pronounced in the soil samples, where the in-house
synthesized probe set detected as many as double the number of ARGs detected by
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the commercially synthesized probe set, despite both having identical probe sequences
based on CARD v1.01. Yet, our in-house synthesized probe set had an almost identical
distribution of the top 20 detected ARGs after enrichment compared to the commercially
synthesized set (Fig. 4), indicating consistent enrichment efficiency between ARGs in the
commercial and in-house synthesized sets. These results were further complemented by
analyzing the overlap between ARGs detected by each set at each subsampling depth
and the associated coverage distribution for all detected ARGs (Fig. S7 and S8). In these
analyses, enrichment with our in-house synthesized probes detected ARGs with less
sequencing effort than commercially synthesized probes and had greater coverage of
detected ARGs.

Enrichment with all probe sets detected vastly more ARGs in wastewater samples
than by sequencing without enrichment. allCARD detected the most, with up to 498
different ARGs, and clinical CARD detected the least, with up to 300 ARGs. However,
clinicalCARD efficiently retained the highest abundance of ARGs, evidenced by the
similar distributions between allCARD and clinicalCARD in Fig. 4a. allCARD detected by
far the greatest number of ARGs in soil samples, up to 96 in the high-impact hospital
grounds. clinicalCARD did not detect a substantial number of ARGs in any soil sample,
except for that taken from the high-impact hospital grounds, where it detected 24.

When subsampled to the same depth, the enrichment factor (i.e.,, the number of
enriched reads mapped to CARD divided by the number of shotgun reads mapped
to CARD) of different probe sets shows a more consistent value within each sample
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than expected, given the high performance of allCARD at detecting the most ARGs
(Fig. 3¢). This is especially evident in wastewater, where clinicalCARD is on par with, if
not outperforming, allCARD in terms of enrichment factor despite detecting far fewer
ARGs in the rarefaction curve. There was a 400-600-fold enrichment in the wastewater
samples in the November sample, depending on the probe set, which decreased to
200-400-fold for the March sample. Soil samples had a markedly lower enrichment factor
than wastewater, hovering between 0- and 200-fold enrichment depending on the probe
set. Yet, enrichment was consistent between samples for different probe sets in soil.
Based on the rarefaction curves (Fig. 3), ARG detection in most samples begins to plateau
by a sequencing depth of 3 M paired-end reads. Extrapolation of these rarefaction curves
to a sequencing depth of 10 M paired-end reads indicates that at a subsampling depth of
3 M, we have captured 70%-80% of the diversity of ARGs that may be detected at 10 M
(Fig. 59).

There were differences when comparing the top 20 most prevalent ARGs in soil and
wastewater (Fig. 4). First, all top 20 ARGs in wastewater data, save for adeJ and tetQ,
were in our set of clinically relevant ARGs. However, in soil samples, not a single top 20
ARG was included in the clinically relevant set, which explains the lack of enrichment
for any top 20 ARGs in soil by the clinical CARD probe set. Most dominant ARGs in the
soil samples were found across various species and associated with efflux pumps (e.g.,
mex genes) or transcriptional regulators (e.g., mtrA and vanR/S). Moreover, the percent
identity of the ARG-associated reads relative to the CARD reference sequences in the
soil samples was lower than those from wastewater samples (Fig. 5). Before enrichment,
the wastewater sample had a mixture of high- (>90%) and mid-identity (60%-90%)
reads relative to their references in CARD, but the soil samples had exclusively mid- to
low-identity (<60%) reads. After enrichment, wastewater samples had almost exclusively
high-identity reads in both the clinicalCARD and allCARD enrichments. In soil samples,
enrichment with allCARD was selected heavily for mid-identity reads, but clinical CARD
was preferentially selected for high-identity reads, especially in the sample from the
high-impact hospital grounds.
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allCARD vs clinical CARD

The wastewater samples were used to examine clinical CARD’s efficacy relative to allCARD
at enriching the clinically relevant ARGs it was designed against, as clinically relevant
ARGs had the highest abundance in the wastewater samples. Overall, clinical CARD
detected an average of 16% more ARGs than allCARD in the November wastewater
sample and 35% more in the March sample at each subsampling depth, with very rarely
an ARG detected uniquely by allCARD (Fig. 6a).

To assess the breadth of coverage of individual ARGs after enrichment with allCARD
or clinicalCARD, clinically relevant ARGs detected by both probe sets in both replicates
at a subsampling depth of 3 M paired-end reads were analyzed. The distribution of
coverage of these ARGs at each subsampling depth for allCARD and clinical CARD was
plotted (Fig. 6b). clinicalCARD delivered 100% coverage of at least 50% of the ARGs
detected in the November sample at a subsampling depth of 1 M reads, while allCARD
took 1.5 M reads to do the same. In the March sample, clinical CARD took only 700 k
reads to reach this level of detection, while allCARD required 2.1 M reads. Based on this
analysis, clinical CARD delivers better coverage of more clinically relevant ARGs at a lower
sequencing depth than allCARD.

Finally, a commonly perceived limitation of enrichment is that hybridization can be
sequence dependant, which may introduce biases in the final library, thereby eliminating
the ability to perform relative quantification of ARGs in a sample. To investigate the
relationship between ARG abundance in enriched vs unenriched data, the clinically
relevant ARGs present with at least one read in both replicates of shotgun and enriched
data at a subsampling depth of 3 M paired-end reads were analyzed (Fig. 7). In the
wastewater samples, due to the high identity between reads, the R? value reached as
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clinical CARD was not analyzed due to a lack of reads mapping to clinically relevant ARGs. In the low human impact sample, 19, 14, and 22 ARGS fit the inclusion

criteria for the low human impact, medium impact, and high impact samples, respectively.

high as 0.996 in the November sample with the allCARD probe set, while it was slightly
lower after enrichment with clinicalCARD. In the March wastewater sample, R? values
were considerably lower, most likely due to the inconsistent replicates. Enrichment was
generally less efficient in the soil samples due to the lower identity between DNA and
probes; however, the R? values remained high, reaching 0.897 in the low-impact sample,
0.936 in the medium-impact, and 0.775 in the high-impact sample from the hospital
grounds.

In Fig. 7, ARGs were labeled on the plot if the enrichment factor was significantly
lower (P < 0.05) than the average enrichment factor within a sample and probe set.
Two ARGs in the November wastewater sample were obvious outliers. The first, cmiA7,
has several close homologs with >99% nucleotide identity to which thousands of reads
were assigned. This occasional occurrence of reads mapping among highly similar alleles
is known as the allele network problem (50, 56). When mapping to highly redundant
databases, even with new tools such as KMA (50) as used by RGI bwt, reads can be
misassigned to another closely related allele or ARG. To illustrate this, we superimposed
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corrected points onto the plot, i.e.,, showing where cmlA1 would reside on the plot if
all the reads attributed to its variants were attributed to it instead. As expected, this
correction brings it into far better agreement with the observed trend. The reads of the
second outlier ARG, paxtA, appear to be from a distant homolog of the reference in
CARD. Due to this sequence variance, it has a lower enrichment efficiency.

DISCUSSION

Our work has resulted in the design of two probe sets to enrich ARGs in metagenomic
sequencing libraries. Several improvements have been made relative to the first iteration
of this probe set against the first version of CARD. First, a denser initial tiling and
exclusion of perfect matches during the nt BLAST filter maximized coverage against all
ARGs. Second, a stringent redundancy filter minimized unneeded probes. This enables
allCARD to enrich all ARGs included in CARD more evenly with fewer probes. Alterna-
tively, clinical CARD has a much higher redundancy since it was designed against a much
smaller set of clinically relevant ARGs. Our in-house synthesis protocol yields a similar
smear pattern to the commercially synthesized version when run on a urea-PAGE gel,
indicating similar physical properties. There was a slight bias to lower molecular weights
in the in-house synthesized probe sets, which may indicate more incorporation of biotin
into the commercial probes.

When comparing in silico statistics of allCARD vs clinicalCARD, it is evident that
clinical CARD outperforms allCARD when enriching for the ARGs it was designed against.
clinicalCARD is superior at targeting the ARGs against which it was designed due to its
decreased need for redundancy filtering during probe design. Since it covers a smaller
number of ARGs, fewer probes are made during the initial tiling step with BaitsTools,
and fewer cycles of redundancy filtering are needed to satisfy the total probe number
cut-off (Fig. 2a). This translates to more probes per ARG and, therefore, better coverage
of the ARGs against which it was designed. However, clinicalCARD also has coverage
against a much larger portion of CARD than only those ARGs (i.e., median coverage
of clinicalCARD probes against allCARD ARGs is >75%). This is because of the high
degree of conservation of ARG nucleotide sequences and the resulting redundancy in
CARD, where one ARG may have several closely related variants (35). Overall, clinical-
CARD has higher median scores in all tested metrics against its design set of ARGs.
Based on this, clinical CARD should be more effective when enriching clinically relevant
ARGs. Additionally, since it is a smaller set of probes, it will be less expensive, even
with in-house synthesis. However, it lacks coverage of many ARGs in allCARD. As some
questions require comprehensive coverage of all ARGs, allCARD is the better choice in
these situations.

To test our new probe sets, five samples were used for testing: two wastewater
samples spanning the beginning and end of winter and three soil samples from
differently human-impacted sites. In all samples, enrichment drastically improved the
detection of ARGs relative to shotgun sequencing, with an enrichment factor of up to
598-fold. Our in-house synthesis consistently detected more ARGs at a lower sequencing
depth than the commercially synthesized probes. This may be due to the evenness of
coverage in the Twist Biosciences oligo-pool, which may provide a superior template for
transcription and, thus, a superior capture reagent.

In wastewater samples, allCARD detected the most ARGs by a considerable margin.
clinical CARD detected relatively few ARGs, although those it did detect were among
the most frequent ARGs in the sequencing data. allCARD once again detected the most
ARGs in the soil samples, but clinical CARD missed many ARGs in the soil except in the
sample from the high-impact hospital grounds. This is likely due to the lack of clinically
relevant ARGs in soil samples from environments with less human impact. We stress,
however, that this experiment, as designed, does not indicate causality from being near
a hospital. It merely supports the notion that samples from environments with high
human influence carry more ARGs, a known phenomenon (57, 58).
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Compared to the large fluctuation in the number of ARGs detected between probe
sets, the enrichment factor among probe sets was more consistent, especially in the
wastewater samples. This suggests that with a certain input of probes, one can expect
a given level of enrichment so long as the target is sufficiently abundant. Enrichment
suffers when this is not the case, such as in the non-allCARD probe sets for the soil
samples. When inspecting the number of identities between reads and references, there
is a pronounced difference between wastewater and soil samples. Without enrichment,
the distribution of the number of identities in unenriched reads of wastewater samples
indicates the presence of both distant and close homologs to the references in CARD.
After enrichment, only close homologs are present, suggesting that they are preferen-
tially enriched. However, distant homologs are enriched in their absence, such as in
the low- and medium-impact soil samples (Fig. 5b). However, in the sample from the
high-impact hospital grounds, there was a bias toward close homologs, especially in the
sample enriched by clinical CARD. Overall, this shows a pattern where clinically relevant
ARGs have a higher identity to their references in CARD and thus are more efficiently
enriched, particularly given that CARD and other ARG databases are biased toward
clinical isolates (35). The distant homologs in soil samples are mainly associated with
efflux and regulation, and we cannot know that these distant homologs confer the same
degree and type of AMR as their reference in CARD. For this, experimental data are
required. However, we can conclude that environmental samples with low human impact
are less likely to contain exact matches to reference ARGs in CARD. For this reason, these
samples are less likely to perform as well when being enriched.

There was a striking linearity when considering the correlation between the number
of ARG-associated reads in enriched vs unenriched samples. This was unexpected due
to the assumed effect that sequence differences, specifically GC content, would have
on hybridization efficiency (59, 60). Relative quantification of ARGs within a sample and
comparison among samples may be possible, i.e., a large difference in read abundance
in enriched data indicates a proportionally large difference in shotgun data, although
smaller differences may be challenging to detect reliably. However, our investigation
contains few samples, and quantifying this relationship was not our primary aim.

There are limitations to enrichment as a method for resistome profiling. Enrichment
cannot detect entirely novel resistance genes that are not in CARD. As such, we designed
CARPDM to update the probe set for each released version of CARD. Combined with
reduced up-front costs via our novel synthesis method, researchers can update their
probe set on demand. Moreover, when the genes that get enriched are distant homologs
to those in CARD, we cannot be sure if they are actual resistance genes or if they would
generate clinical levels of resistance. More work is required to validate these genes upon
detection. Finally, this protocol relies on proprietary hybridization reagents and buffers
from commercial suppliers.

Conclusions

The increasing global burden of AMR requires cost-effective and scalable solutions.
Overall, our in-house synthesized probes detect more ARGs with less sequencing than
a commercial option in the samples tested. allCARD robustly enriches the vast array
of ARGs against which it was designed, as well as their distant homologs. clinical CARD
even more robustly enriches the smaller set of clinically relevant ARGs against which
it was designed. This work shows that targeted enrichment is a valuable companion
to DNA sequencing when detecting ARGs. Future work will involve further updating
and refining the set of clinically relevant ARGs and continually updating the probe
set with every new CARD release. Additionally, while we have released a preliminary
protocol for the in-house synthesis of any probe set, there remains room for this protocol
to be optimized and made even less reliant on commercial reagents. Finally, to make
this technology more accessible, future work should also investigate its efficacy on
alternative DNA sequencing platforms, such as Oxford Nanopore’s MinlON. Yet, overall,
this work has shown the power of enrichment to decrease the cost and increase the
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impact of large-scale monitoring of ARGs using DNA sequencing. Alongside CARD, this
technology can help researchers investigate ARG prevalence and transmission patterns
among different populations and environments.
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