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ABSTRACT Better interrogation of antimicrobial resistance requires new approaches to 
detect the associated genes in metagenomic samples. Targeted enrichment is an ideal 
method for their sequencing and characterization. However, no open-source, up-to-date 
hybridization probe set targeting antimicrobial resistance genes exists. Here, we describe 
the Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM), a probe 
design software package made to run alongside all future Comprehensive Antibiotic 
Resistance Database releases. To test its efficacy, we have created and tested two 
separate probe sets: allCARD, which enriches all genes encoded in the Comprehensive 
Antibiotic Resistance Database’s protein homolog models (n = 4,661), and clinicalCARD, 
which focuses on a clinically relevant subset of resistance genes (n = 323). We dem­
onstrate that allCARD increases the number of reads mapping to resistance genes 
by up to 594-fold. clinicalCARD performs similarly when clinically relevant genes are 
present, increasing the number of resistance-gene mapping reads by up to 598-fold. 
In parallel with this development, we have established a protocol to synthesize any 
probe set in-house, saving up to 350 dollars per reaction. Together, these probe sets, 
their associated design program CARPDM, and the protocol for in-house synthesis 
will democratize metagenomic resistome analyses, allowing researchers access to a 
cost-effective and efficient means to explore the antibiotic resistome.

IMPORTANCE Antimicrobial resistance threatens to undermine all modern medicine 
and is driven by the spread of antimicrobial resistance genes among pathogens, 
environments, patients, and animals. DNA sequencing of complex samples, such as 
wastewater, shows considerable promise for tracking these genes and making risk 
assessments. However, these methods suffer from high costs and low detection limits, 
plus a requirement for frequent redesign due to the constantly evolving diversity of 
resistance genes. Building upon our Comprehensive Antibiotic Resistance Database, 
our research provides software for on-demand renewal, based on the latest knowl­
edge of resistance gene diversity, of our novel bait-capture hybridization platform 
that simultaneously reduces cost and increases detection levels for DNA sequencing 
of complex samples. The significance of our research is in the development of new 
software tools, reagent synthesis protocols, and hybridization enrichment protocols to 
provide affordable, high-resolution metagenomics DNA sequencing, which we test using 
environmental and wastewater samples.

KEYWORDS antimicrobial resistance, sequencing, metagenomics, target enrichment

A ntimicrobial resistance (AMR) is a growing and global problem. In 2019, AMR was 
estimated to be directly responsible for 1.27 M deaths (1). By 2050, this number may 

be as high as 10 M (2). Most of this impact is and will continue to be in regions least 
equipped to combat it, largely due to a lack of resources (1). Therefore, it is imperative 
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that we devise cost-effective solutions to address AMR more effectively and equitably. 
Bacterial evolution has been marked by the arms race of antibiotics and their 
associated resistance genes, providing a competitive edge to their producers (3–8). This 
struggle is revealed in the vast reservoir of antimicrobial resistance genes (ARGs) in 
environmental microbes, requiring only mobilization through horizontal gene transfer 
to be effective against any treatment we deploy (9–12). Therefore, to better combat 
AMR emergence, we need to improve how we detect the full complement of ARGs 
(i.e., the resistome [13]) in environmental and other reservoirs. Attractive monitoring 
targets are environments such as wastewater, a fertile ground for genetic exchange 
between bacteria (5) that provides a snapshot of ARG prevalence in the community 
(14–20). Natural environments, such as soils, rivers, and farms, are known reservoirs of 
ARGs, many with the potential to mobilize into pathogens (21–25). Finally, profiling the 
resistome of human and animal microbiomes allows us to identify critical determinants 
in the spread of resistance within and between these two groups (26, 27).

Investigating these rich data sources requires methods to characterize their resistome. 
Several techniques exist that may fill this niche, each with its limitations. PCR, for 
example, is commonly used to detect ARGs in Mycobacterium tuberculosis isolates (28). 
While useful for a small, targeted set of genes, the Comprehensive Antibiotic Resistance 
Database (CARD) (29) hosts over 5,000 resistance determinants, an untenable number 
for PCR methods. Furthermore, because of the specificity of PCR, there is little chance 
of detecting distantly related genes, as a single nucleotide substitution may eliminate 
any signal from the assay. Finally, even if one detects a novel sequence variant by 
PCR, without follow-up amplicon sequencing, there is no way to identify it. This makes 
phylogenetic tracking of the spread of AMR far more difficult.

Shotgun DNA sequencing can detect all the genes in a sample given sufficient depth. 
Groups have used this method to characterize environmental (25, 30) and worldwide 
wastewater (14, 15) resistomes. A limitation of this technique is that all ARGs in a 
metagenomic sample typically represent <1% of the total DNA, even in samples where 
they are highly abundant, such as wastewater. Individual ARGs may be several orders 
of magnitude less than that in abundance. For example, a single 1 kb ARG that makes 
up 1 × 10−6% of the DNA in a sample would require 10 Gbp of sequence data to obtain 
10-fold coverage of the ARG. Performing this work on a NextSeq 2,000 would cost over 
USD$1,500. As such, while deep sequencing can be used to characterize metagenomic 
resistomes, it entails a high cost per sample, most of which will be spent sequencing 
background DNA. The associated volume of data also increases equipment costs and 
computing power needed to parse the data, further constraining this technique’s use in 
resource-limited settings (31).

Targeted enrichment is a modification to shotgun sequencing that allows robust 
detection of a broad range of specific, low-abundance targets with less sequencing. In 
this protocol, DNA from a sequencing library is denatured, allowing biotinylated RNA 
“probes” complementary to a set of target sequences to hybridize (32, 33). Streptavidin-
coated magnetic beads capture these biotinylated RNA probes and their complementary 
DNA partners from the background (Fig. 1). This process increases the proportion of the 
target DNA in a library, allowing one to sequence less yet detect more.

A probe-capture protocol is ideal for detecting thousands of ARGs with a fraction of 
the sequencing required by brute-force shotgun approaches. However, two challenges 
exist for the probe-capture strategy in the AMR space. First, there is no up-to-date and 
open-source AMR probe set, as the most recent was designed against only 2,021 ARGs 
from CARD v1.0.1, released in 2015 (34). The second is that the cost of probes from 
commercial suppliers can be up to $350 per reaction, diminishing cost savings relative to 
shotgun sequencing. To address the first of these challenges, we have written a software 
package—the Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM)—
to generate a stringently filtered probe set with minimal off-target enrichment from 
the CARD v3.2.5 protein homolog model (allCARD) ARGs. This software package will 
run alongside all new releases of CARD, ensuring there is always an open-source and 
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up-to-date probe set to enrich ARGs from any sample. We also curated a list of 323 
clinically relevant ARGs and generated a smaller probe set (clinicalCARD) with the same 
program, providing a more focused alternative to the allCARD probe set, as the full 
complement of ARGs may not be necessary for many projects in healthcare settings. 
To address the cost of commercial probes, we have developed a protocol that allows 
in-house synthesis of any probe set from a Twist Biosciences oligo-pool. With this 
strategy, researchers can synthesize thousands of reactions worth of any probe set for a 
one-time fee lower than that of a typical 16-reaction kit from a commercial supplier.

To test our probe sets and in-house synthesis of probes, five conditions were tested 
on two wastewater and three soil samples in duplicate, comparing enrichment via 
the 2015 CARD v1.0.1 (34), allCARD, clinicalCARD probe sets to sequencing without 
enrichment, plus examination of the comparative performance of commercially supplied 
probes, and probes synthesized using our new protocol. We demonstrate that our 
in-house synthesized probe set detected more ARGs with the same amount of sequenc­
ing on the samples we tested when compared to a commonly used commercial option. 
We also illustrate CARPDM’s capability as a probe design platform by testing allCARD 
and clinicalCARD probe sets on wastewater and soil samples. We found that allCARD 
detects far more ARGs than the probe set generated against CARD v1.0.1 (34). Finally, we 
show that clinicalCARD detects clinically relevant ARGs with less sequencing and better 
coverage than allCARD.

MATERIALS AND METHODS

ARG selection for allCARD

Only ARGs curated as protein homolog models were included from CARD v3.2.5 (n = 
4,661), as these ARGs do not confer resistance via the acquisition of mutations (i.e., 
CARD’s protein variant models). Including mutation-based ARGs in the design would 
enrich wild-type alleles, as enrichment probes can readily hybridize over a single 
mutation, diluting the sequencing effort.

FIG 1 Targeted enrichment workflow. Magnetic streptavidin beads are used to bind biotinylated RNA molecules, which are, in turn, attached to a complemen­

tary DNA partner. One can considerably bias the resulting library toward a target fraction by pelleting the beads and washing away the background before 

amplification and sequencing.

Full-Length Text Applied and Environmental Microbiology

March 2025  Volume 91  Issue 3 10.1128/aem.01876-24 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
20

 M
ay

 2
02

5 
by

 1
30

.1
13

.1
55

.1
6.

https://doi.org/10.1128/aem.01876-24


ARG selection for clinicalCARD

The CARD prevalence data v4.0.0 (19) aided in identifying clinically relevant ARGs. This 
data set is a collection of 221,175 sequencing assemblies from 377 pathogens with 
associated ARGs identified by CARD’s Resistome Gene Identifier (RGI) software (35). These 
data include a collection of 21,079 completely sequenced chromosomes and 41,828 
completely sequenced plasmids. Preliminary examination of these data illustrated that 
the distribution of ARGs was almost binary, i.e., each ARG predominantly occurred in 
either plasmids or chromosomes, but not both (Fig. S1). It also showed that ARGs with 
a higher occurrence of plasmids were far more likely to be clinically relevant (36–39). As 
such, the first list of candidate clinically relevant ARGs included any ARG in CARD with 
at least 10 occurrences in plasmids, yielding 237 ARGs. Ten was chosen as a cutoff as it 
minimized the false positive inclusion of highly prevalent but clinically irrelevant ARGs 
such as species-specific efflux mechanisms. Any ARG with >5% but <95% prevalence 
in any ESKAPE pathogen (40, 41) (Enterococcus faecium, Staphylococcus aureus, Kleb­
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 
species) was also added to this list, yielding a further 124 ARGs. Finally, 42 ARGs identified 
as clinically significant via a literature review were added, as they were included in 
publications investigating similar questions (42, 43). Overall, a wide net was cast, erring 
on the side of false positives and resulting in a draft set of 403 candidate ARGs. This 
set was manually curated based on CARD prevalence data, considering the species 
they appeared in, the genomic context (whether it was mobile, i.e., on a plasmid), the 
drug classes they impact, the environmental overlap of the host organism with humans, 
and the relative risk each host imposed as a pathogen. Our approach was developed 
following recent ARG risk frameworks developed for metagenomic data (42, 43). In short, 
our manual curation selected for mobile ARGs that confer resistance to antibiotics used 
for therapy in humans is present in a human pathogen and is likely to colonize humans 
or animals. After curation, 323 ARGs were deemed clinically relevant and included in the 
clinicalCARD probe set design.

Probe design

CARPDM is written in Python, save for the first step, which employs the program 
BaitsTools (44) to tile probe sequences along ARG sequences. Probes designed by 
CARPDM have an 80 nt length as per the prior validated ARG bait set for CARD v1.0.1. 
This is also an ideal size for adding amplification primers while remaining below the 120 
nt cut-off for the base level of a Twist oligo-pool if synthesizing probes in-house. The 
probes also have an extremely high density before filtering, with a tiling distance of 4 nt 
along ARG nucleotide sequences. This increases redundancy in the probe set and makes 
it more robust against stringent downstream filtering. As input, the allCARD design used 
all 4,661 CARD v3.2.5 protein homolog model ARGs, while clinicalCARD’s design used the 
curated 323 clinically relevant ARGs.

There are three filtering steps after the initial probe construction (Fig. S2). The first 
is a filter based on sequence, in which the probes are deduplicated, confirmed as 80 
nt, contain no ambiguous bases, have no perfect complements within the set, have a 
Tm > 50°C, and contain no LguI restriction endonuclease cut sites. The last condition 
is essential for the synthesis protocol. Since bacteria are likely to be the most abun­
dant organism in most metagenomic samples (45), the second filter is a BLASTN (46) 
search against the nt database to minimize off-target enrichment and remove probes 
with >80% identity over <50 nt to any bacterial sequence, as any probe similar to a 
bacterial sequence over >50 nt is likely the ARG itself. This filter also removes probes 
with >80% similarity over >50 nt to any viral, archaeal, or eukaryotic sequence unless 
they match perfectly (i.e., likely sequence contamination by an ARG).

The last filter removes redundancy in the probe set, using BLASTN to compare the 
probes against each other. To remove probes that could bind to each other rather 
than the target DNA, any probes found to be complementary over the entire 80 nt are 
collapsed to a single representative. After removing complementary probes, CARPDM 
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determines if the number of probes in the set is below a pre-defined cut-off. For 
allCARD, we arbitrarily set this cut-off at 40,000 probes, while for clinicalCARD, it was 
set to 20,000 probes. If not below the cut-off, CARPDM collapses probes with 79 nt 
of complementarity to a single representative, repeating the process with decreasing 
length of complementarity until below the cut-off.

In silico analysis of probe sets

BLASTN (46) was used to compare the probe sets to the ARG sequences. Using 
Python and NumPy (47), “target” arrays of zeros were constructed. Each of these arrays 
represented a single ARG against which the probeset was designed. After aligning all 
probes against the input set of target sequences with BLASTN, arrays of ones (matches) 
and zeros (mismatches) were constructed for each probe: target alignment. These arrays 
were then added to the corresponding target array at the start position of the alignment. 
Repeating this for every probe: target alignment yields the tallied coverage of each 
nucleotide position by probes. This coverage array was used to compute summary 
statistics.

Probe synthesis

The starting material for the in-house synthesis of probes is a custom oligo pool (Twist 
Biosciences, San Francisco, CA). The synthesis scale of the pool ordered will vary based 
on the total number of unique probes in the pool. For allCARD, a synthesis scale that 
allowed 32,000–36,000 unique sequences was ordered, while for clinicalCARD, this scale 
was 16,000–20,000. Each unique oligo in this pool’s design contains an individual probe 
sequence between two other sequences that are the same across all oligos, such that the 
final length is 120 nt. The first of these flanking sequences is a T7 transcription start site 
with three extra guanines to reduce transcription efficiency variability (48). The second is 
a unique primer sequence chosen by the CARPDM program to minimize the probability 
of interactions with the probe sequences of the pool. This primer must contain an LguI 
cut site directly proximal to the unique probe sequence, such that it can be cleaved after 
amplification of the pool and before T7 transcription (Fig. S3).

The last part of CARPDM’s pipeline is to convert the designed probe sequences that 
would typically be ordered as a probeset from a commercial supplier into oligo pool 
sequences that can be ordered from Twist Biosciences. To do this, CARPDM appends a 
T7 transcription start site with three extra guanines to one end of every probe sequence. 
It then creates every possible primer with a terminal LguI cut site of the correct length 
to yield a final oligo of 120 nt when appended to the opposite side. It compares these 
putative primers to the concatenated T7/probe sequences using BLASTN and selects 
the primer with the fewest matches as the second amplification primer, appending 
the reverse complement to the opposite side of each probe sequence. The resulting 
sequences were ordered as an oligo-pool from Twist Biosciences (San Francisco, CA), and 
the amplification primers were ordered from Integrated DNA Technologies (Coralville, IA).

For probe synthesis, sixteen 50 µL PCRs were conducted in parallel, each with 1 ng 
oligo pool input using 0.5 µL Phusion polymerase with HF buffer (Thermo Fisher 
Scientific, Waltham, MA), 1 µM of each primer, and 0.2 mM dNTPs (Thermo Fisher 
Scientific, Waltham, MA). Cycling conditions were initial denaturation at 98°C for 30 s, 
12 cycles of 98°C for 10 s, 60°C for 30 s, 72°C for 15 s, and final extension at 72°C for 
10 m. Reactions were purified with the QIAQuick Nucleotide Removal Kit (Qiagen, Hilden, 
Germany), pooling eight reactions per column and eluting each in 30 µL. The elutions 
were then pooled, and their concentrations were quantified via Qubit 1× dsDNA HS assay 
(Thermo Fisher Scientific, Waltham, MA).

Four 50 µL restriction endonuclease treatments were then performed in parallel, each 
with 2 µg PCR input and 2 µL FastDigest LguI (Thermo Fisher Scientific, Waltham, MA). 
These reactions were then incubated at 37°C for 2 hours, followed by heat inactivation 
at 65°C for 5 min. Parallel reactions were then pooled over a single Qiagen MinElute PCR 
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Purification column (Qiagen, Hilden, Germany), eluted in 10 µL, and quantified via Qubit 
1× dsDNA HS assay.

Finally, T7 transcription reactions were performed with up to 1 µg of purified LguI 
digest product, although similar yields were achieved with as little as ~250 ng. For this, 
HiScribe T7 High Yield RNA Synthesis Kit (New England Biolabs, Ipswitch, MA) was used 
according to the manufacturer’s instructions, with one-third of the UTP concentration 
comprised of Bio-16-UTP (Thermo Fisher Scientific, Waltham, MA). The 20 µL reactions 
were incubated for 16 h at 37°C, after which 68 µL RNase-free H2O was added with 10 µL 
DNase I Buffer and 2 µL DNase I (New England Biolabs, Ipswitch, MA). The resulting mix 
was incubated for 15 m at 37°C, after which the RNA probes were purified using the 
Monarch RNA Cleanup kit (50 µg; New England Biolabs, Ipswitch, MA). Finally, concen­
trations were quantified via Nanodrop (Thermo Fisher Scientific, Waltham, MA), and 
probes were diluted to 100 ng/µL. One hundred nanograms of each probe set was then 
analyzed on a 12.5% Urea-PAGE gel stained with SYBR-Gold (Thermo Fisher Scientific, 
Waltham, MA). A successful reaction was indicated by a smeared band of a slightly higher 
molecular weight than 80 nt compared to the DNA marker and no remaining band at 
120 nt. The probes should appear at a slightly higher molecular weight than 80 nt due to 
the incorporation of biotin and the extra molecular weight contribution to RNA molecule 
weight from the 2’ hydroxyl group. The smear indicates the successful incorporation 
of biotin into the probes depending on uracil content and the inherently stochastic 
nature of biotinylated vs non-biotinylated uracil insertion. A 120 nt band would indicate
the remaining oligo pool if present, which should have been removed by the DNase
treatment.

Samples

Two wastewater samples and three soil samples were selected to test the efficacy of 
the newly constructed probe sets with sequencing. The wastewater samples were 24 h 
aggregate influent samples from the city of Hamilton (Ontario, Canada) Wastewater 
Treatment Plant (7 November 2022 and March 2023). DNA was extracted from 50 mL 
wastewater samples within 24 h of sampling using the DNeasy PowerWater Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocols, each with an associated 
H2O control. Soil samples were collected from three different environments selected to 
represent distinct levels of human impact. The first was taken on 10 June 2016, from 
Holman Island in the Northwestern Territories of Canada, a pristine environment with 
little human influence. The second was taken on 6 March 2023, from a local wetland in an 
urban setting in Hamilton (Ontario, Canada), representing an environment with middling 
human impact. The third was taken on 27 February 2023, from a high-traffic pedestrian 
area frequented by smokers outside of a Hamilton (Ontario, Canada) hospital, a setting 
with heavy human influence. All soil samples were stored at −80°C until processing. DNA 
was extracted from 250 mg soil samples using the Qiagen DNeasy Powersoil Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s protocols alongside an associated 
H2O control.

Sample processing, enrichment, and DNA sequencing

Commercially synthesized probes (CARD v1.0.1 probe set only) and reagents for all 
enrichments were purchased from Daicel Arbor Biosciences (Ann Arbor, MI). In addition, 
probes for the allCARD, clinicalCARD, and CARD v1.01 sets were synthesized in-house 
as outlined above. While allCARD and clinicalCARD probe sets were only synthesized 
in-house, commercially synthesized CARD v.1.0.1 probes allowed direct comparison with 
the identical CARD v.1.0.1 probe set synthesized in-house.

For each sample, extracted DNA was quantified via NanoDrop (Thermo Fisher 
Scientific, Waltham, MA), diluted, and sonicated to an average size of 400 bp using 
Covaris G-tubes (Woburn, MA). From this, libraries were prepared in quadruplicate from 
1 µg DNA using the NEBNext Ultra II ligation kit (New England Biolabs, Ipswich, MA) 
according to the manufacturer’s protocols. These libraries were then pooled before 
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redistributing to half-size indexing reactions using NEBNext Multiplex Oligos for Illumina 
(New England Biolabs, Ipswitch, MA). Sample libraries were then enriched in two 
batches. The first batch performed allCARD and clinicalCARD enrichments, while the 
second batch performed commercial and in-house CARD v1.0.1 enrichments (Fig. S4). All 
enrichments were performed according to the manufacturer’s protocols (version 5.02) 
using the Daicel Arbor myBaits v5 kit and reagents in a half-size reaction format with a 
24 h hybridization at 62°C, maximum library input, 250 ng of probes, and 14 cycles of 
post-enrichment reamplification. In-house probes were diluted with RNase-free water to 
the same concentration as Daicel Arbor’s (100 ng/µL) before use in the protocol. Each 
enriched library was compared to the same sample without enrichment.

Before sequencing, libraries were quantified in triplicate using NEB Luna Universal 
Probe qPCR Master Mix (New England Biolabs, Ipswitch, MA), Illumina PhiX standard (San 
Diego, California), and the following primers, all ordered from Integrated DNA Technol­
ogies (Coralville, IA): P5: AATGATACGGCGACCACCGA, P7: CAAGCAGAAGACGGCATACGA, 
and probe: /56-FAM/CCCTACACG/ZEN/ACGCTCTTCCGATCT/3IABkFQ/. Cycling conditions 
were initial denaturation at 95°C for 3 m, followed by 40 cycles of denaturation at 95°C 
for 15 s and annealing/extension at 60°C for 1 m. The resulting concentrations were used 
to make individual pools for each enrichment set above, alongside one replicate of the 
shotgun (without enrichment) libraries (Fig. S4). Paired-end reads of 2 × 150 bp were 
obtained from each pool using an Illumina NextSeq 2000 (San Diego, California), with 
samples having an average depth of 4.47 M clusters sequenced (minimum of 3.26 M 
clusters and a maximum of 6.71 M clusters).

Analysis and visualization

All analyses were performed with custom Python scripts and visualized with the 
ggplot2 (49) package in R. For rarefaction analysis, libraries were subsampled every 
100,000 paired-end reads up to 3 M using seqtk v1.3. Fastp v0.23.2 28 performed 
initial read trimming, quality control, and deduplication for these subsamples without 
merging. CARD’s RGI bwt v6.0.2 tool with KMA v1.4.9 (50) then mapped reads to 
reference sequences in CARD v3.2.5. ARGs were classified as present if they had more 
than 100 reads mapping (regardless of the breadth of coverage of the reference 
sequence). Regression lines were determined without extrapolation using the ggplot 
local estimated scatterplot smoothing function with geom_smooth. Since one cannot 
extrapolate a locally estimated function, we used a standard log-linear model when 
extrapolating the predicted number of ARGs detected at a sequencing depth of 10 M. 
GNU parallel v20161222 (51), the Python pandas v1.5.3 library (52), and BioPython v1.78 
(53) were used heavily for these analyses.

For read distribution analysis, custom Python scripts used the CARD RGI bwt output 
to count the number of reads that mapped to each ARG in soil and wastewater samples, 
respectively. The top 20 most prevalent ARGs (i.e., ARGs with the highest number of 
reads mapping) in each sample source (soil and wastewater) were kept for the figure, 
while all others were collapsed to the “other” category. This cut-off was chosen to keep 
figure legends readable while providing discriminatory power between the performance 
of different probe sets. Mean counts of the two replicates are used to determine the 
number plotted. The distribution of percent identity between read and reference for 
each sample was determined by a custom Python script that parsed the CIGAR strings 
in the BAM file that accompanies the RGI bwt output, where the percent identity was 
calculated as the number of nucleotide matches/151 × 100. Replicates were pooled for 
this analysis.

In a clinicalCARD vs allCARD overlap analysis, a custom Python script determined 
clinically relevant ARGs detected by allCARD or clinicalCARD with ≥100 mapped reads 
in both replicates at each subsampling depth. A similar approach was used to deter­
mine the overlap between the in-house vs commercially synthesized CARD v1.01 probe 
sets. However, to compare these sets, only ARGs included in the initial design (i.e., in 
CARD v1.0.1) were considered. Coverage analysis only considered clinically relevant ARGs 
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detected by both clinicalCARD and allCARD with at least one read at a subsampled 
sequencing depth of 3 M paired-end reads in both replicates. Python scripts determined 
each ARG’s coverage using the CARD RGI bwt output from the rarefaction analysis. Once 
again, for a similar analysis comparing the commercial and in-house synthesis, only ARGs 
from CARD v1.0.1 were considered.

For a wastewater read correlation analysis, only clinically relevant (i.e., in clinicalCARD) 
ARGs detected with at least one read in both shotgun and enriched in each sample were 
considered. All ARGs were included from soil samples, while clinicalCARD analysis was 
omitted due to the sparsity of detected ARGs. R2 values were calculated using scikit-learn 
v1.2.2 (54). The cmlA1 read number correction outlined below was accomplished by 
summing the number of reads attributed to all closely related cmlA variants (i.e., cmlA1, 
4, 5, 6, 8, and 9) in each relevant treatment and manually adding the corresponding 
values to the plot.

RESULTS

Probe design and synthesis

After design and filtering, allCARD contained 34,915 unique probe sequences covering 
4,661 ARGs. Alternatively, clinicalCARD contained 15,393 unique probes, covering 323 
ARGs (Fig. S5). No probe set had zero coverage of an ARG against which it was designed. 
When analyzing probes against all ARGs curated as CARD protein homolog models (Fig. 
2a), the median value of all metrics other than the proportion covered per ARG was 
higher in the clinicalCARD probe set. The reason for clinicalCARD’s bimodal distribution 
compared to allCARD is that it was only designed against the clinically relevant subset. 
Therefore, the clinically irrelevant genes (e.g., tolC and H-NS) had no probes aligning 
since they were not included in the initial design. However, despite only being designed 
against 323 ARGs, over 50% of CARD ARGs had coverage of >75% by clinicalCARD. When 
analyzing both probe sets against the clinically relevant ARGs in clinicalCARD (Fig. 2b), 
median values in clinicalCARD were higher than allCARD in every metric.

FIG 2 In silico probe analysis using BLAST to align all probes in allCARD and clinicalCARD against (a) all genes in CARD and (b) all genes deemed to be clinically 

relevant.
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The increased in silico performance of clinicalCARD is a consequence of the smaller 
initial set of reference sequences. As such, it did not have to remove as many probes 
during the redundancy filter (Fig. S5a) and ended up with more redundancy and superior 
coverage of the ARGs against which it was designed. Probes in clinicalCARD had a 
lower median GC content and melting temperature. A higher proportion of probes also 
target only a single ARG in clinicalCARD relative to allCARD (Fig. S5b). After synthesis, a 
urea-PAGE gel shows a smear above 80 nt due to the stochastic incorporation of biotin 
into the probe (Fig. S6). A comparison of all pools against the commercially synthesized 
version indicates a similar size distribution, with a slight bias toward lower molecular 
weights in the in-house synthesized probe set.

Probe testing

Five samples in five different treatments were employed to determine the efficacy of 
the probes when enriching for targets. No blanks had sufficient sequencing depth to 
be analyzed at even the lowest subsampling depth, indicating negligible contamination. 
First, the non-inferiority of the in-house synthesized probe set relative to the commercial 
option was established. After subsampling every 100 k paired-end reads up to 3 M with 
analysis by the CARD RGI bwt tool (55), the number of ARGs with >100 mapped reads 
was determined for each depth in each sample (Fig. 3). This analysis illustrated that 
the in-house synthesized probes detected more ARGs at the same sequencing depth in 
every sample. This effect was more pronounced in the soil samples, where the in-house 
synthesized probe set detected as many as double the number of ARGs detected by 

FIG 3 Enrichment efficiency comparisons between different treatments. Rarefaction analysis of the number of detected genes at subsampling depths of every 

100 k reads up to 3 M in (a) wastewater samples and (b) soil samples. Shaded areas represent the 95% CI. (c) Average enrichment factor ±1 SD of different probe 

sets in different samples. The enrichment factor is defined here as the number of CARD-mapped reads after enrichment with the relevant probe set divided by 

the number of CARD-mapped reads in shotgun sequencing data.
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the commercially synthesized probe set, despite both having identical probe sequences 
based on CARD v1.01. Yet, our in-house synthesized probe set had an almost identical 
distribution of the top 20 detected ARGs after enrichment compared to the commercially 
synthesized set (Fig. 4), indicating consistent enrichment efficiency between ARGs in the 
commercial and in-house synthesized sets. These results were further complemented by 
analyzing the overlap between ARGs detected by each set at each subsampling depth 
and the associated coverage distribution for all detected ARGs (Fig. S7 and S8). In these 
analyses, enrichment with our in-house synthesized probes detected ARGs with less 
sequencing effort than commercially synthesized probes and had greater coverage of 
detected ARGs.

Enrichment with all probe sets detected vastly more ARGs in wastewater samples 
than by sequencing without enrichment. allCARD detected the most, with up to 498 
different ARGs, and clinicalCARD detected the least, with up to 300 ARGs. However, 
clinicalCARD efficiently retained the highest abundance of ARGs, evidenced by the 
similar distributions between allCARD and clinicalCARD in Fig. 4a. allCARD detected by 
far the greatest number of ARGs in soil samples, up to 96 in the high-impact hospital 
grounds. clinicalCARD did not detect a substantial number of ARGs in any soil sample, 
except for that taken from the high-impact hospital grounds, where it detected 24.

When subsampled to the same depth, the enrichment factor (i.e., the number of 
enriched reads mapped to CARD divided by the number of shotgun reads mapped 
to CARD) of different probe sets shows a more consistent value within each sample 

FIG 4 Top 20 AMR genes according to overall count and their associated read proportions in each sample: (a) wastewater samples and (b) soil samples. Very long 

gene names were replaced with their CARD short name.
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than expected, given the high performance of allCARD at detecting the most ARGs 
(Fig. 3c). This is especially evident in wastewater, where clinicalCARD is on par with, if 
not outperforming, allCARD in terms of enrichment factor despite detecting far fewer 
ARGs in the rarefaction curve. There was a 400–600-fold enrichment in the wastewater 
samples in the November sample, depending on the probe set, which decreased to 
200–400-fold for the March sample. Soil samples had a markedly lower enrichment factor 
than wastewater, hovering between 0- and 200-fold enrichment depending on the probe 
set. Yet, enrichment was consistent between samples for different probe sets in soil. 
Based on the rarefaction curves (Fig. 3), ARG detection in most samples begins to plateau 
by a sequencing depth of 3 M paired-end reads. Extrapolation of these rarefaction curves 
to a sequencing depth of 10 M paired-end reads indicates that at a subsampling depth of 
3 M, we have captured 70%–80% of the diversity of ARGs that may be detected at 10 M 
(Fig. S9).

There were differences when comparing the top 20 most prevalent ARGs in soil and 
wastewater (Fig. 4). First, all top 20 ARGs in wastewater data, save for adeJ and tetQ, 
were in our set of clinically relevant ARGs. However, in soil samples, not a single top 20 
ARG was included in the clinically relevant set, which explains the lack of enrichment 
for any top 20 ARGs in soil by the clinicalCARD probe set. Most dominant ARGs in the 
soil samples were found across various species and associated with efflux pumps (e.g., 
mex genes) or transcriptional regulators (e.g., mtrA and vanR/S). Moreover, the percent 
identity of the ARG-associated reads relative to the CARD reference sequences in the 
soil samples was lower than those from wastewater samples (Fig. 5). Before enrichment, 
the wastewater sample had a mixture of high- (>90%) and mid-identity (60%–90%) 
reads relative to their references in CARD, but the soil samples had exclusively mid- to 
low-identity (<60%) reads. After enrichment, wastewater samples had almost exclusively 
high-identity reads in both the clinicalCARD and allCARD enrichments. In soil samples, 
enrichment with allCARD was selected heavily for mid-identity reads, but clinicalCARD 
was preferentially selected for high-identity reads, especially in the sample from the 
high-impact hospital grounds.

FIG 5 Distribution of the number of similarities between read and reference, based on CIGAR strings from the BAM file output by the CARD RGI bwt module. The 

internal line of each violin plot indicates the median of the distribution.
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allCARD vs clinicalCARD

The wastewater samples were used to examine clinicalCARD’s efficacy relative to allCARD 
at enriching the clinically relevant ARGs it was designed against, as clinically relevant 
ARGs had the highest abundance in the wastewater samples. Overall, clinicalCARD 
detected an average of 16% more ARGs than allCARD in the November wastewater 
sample and 35% more in the March sample at each subsampling depth, with very rarely 
an ARG detected uniquely by allCARD (Fig. 6a).

To assess the breadth of coverage of individual ARGs after enrichment with allCARD 
or clinicalCARD, clinically relevant ARGs detected by both probe sets in both replicates 
at a subsampling depth of 3 M paired-end reads were analyzed. The distribution of 
coverage of these ARGs at each subsampling depth for allCARD and clinicalCARD was 
plotted (Fig. 6b). clinicalCARD delivered 100% coverage of at least 50% of the ARGs 
detected in the November sample at a subsampling depth of 1 M reads, while allCARD 
took 1.5 M reads to do the same. In the March sample, clinicalCARD took only 700 k 
reads to reach this level of detection, while allCARD required 2.1 M reads. Based on this 
analysis, clinicalCARD delivers better coverage of more clinically relevant ARGs at a lower 
sequencing depth than allCARD.

Finally, a commonly perceived limitation of enrichment is that hybridization can be 
sequence dependant, which may introduce biases in the final library, thereby eliminating 
the ability to perform relative quantification of ARGs in a sample. To investigate the 
relationship between ARG abundance in enriched vs unenriched data, the clinically 
relevant ARGs present with at least one read in both replicates of shotgun and enriched 
data at a subsampling depth of 3 M paired-end reads were analyzed (Fig. 7). In the 
wastewater samples, due to the high identity between reads, the R2 value reached as 

FIG 6 Comparison of enrichment efficiency of clinically relevant ARGs between allCARD and clinicalCARD probe sets. (a) Overlap analysis showing ARGs 

detected by allCARD and clinicalCARD, for both with at least 100 reads at different subsampling depths. (b) Coverage analysis showing the distribution of 

coverage for ARGs detected by both probe sets with at least one read at a depth of 3 M. In the November sample, there were 226 such ARGS. In the March 

sample, there were 176.
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high as 0.996 in the November sample with the allCARD probe set, while it was slightly 
lower after enrichment with clinicalCARD. In the March wastewater sample, R2 values 
were considerably lower, most likely due to the inconsistent replicates. Enrichment was 
generally less efficient in the soil samples due to the lower identity between DNA and 
probes; however, the R2 values remained high, reaching 0.897 in the low-impact sample, 
0.936 in the medium-impact, and 0.775 in the high-impact sample from the hospital 
grounds.

In Fig. 7, ARGs were labeled on the plot if the enrichment factor was significantly 
lower (P < 0.05) than the average enrichment factor within a sample and probe set. 
Two ARGs in the November wastewater sample were obvious outliers. The first, cmlA1, 
has several close homologs with >99% nucleotide identity to which thousands of reads 
were assigned. This occasional occurrence of reads mapping among highly similar alleles 
is known as the allele network problem (50, 56). When mapping to highly redundant 
databases, even with new tools such as KMA (50) as used by RGI bwt, reads can be 
misassigned to another closely related allele or ARG. To illustrate this, we superimposed 

FIG 7 Correlation of the number of enriched and shotgun reads for each ARG with associated R2 values. Shaded areas represent the 95% CI. (a) Wastewater 

analysis: 44 and 31 ARGs fit the inclusion criteria for the November and March samples, respectively. The purple and pink dots show cmlA1’s position for allCARD

and clinicalCARD enrichment, respectively, if all reads from all extremely closely related cmlA variants were considered to be from cmlA1. (b) Soil analysis:

clinicalCARD was not analyzed due to a lack of reads mapping to clinically relevant ARGs. In the low human impact sample, 19, 14, and 22 ARGS fit the inclusion 

criteria for the low human impact, medium impact, and high impact samples, respectively.
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corrected points onto the plot, i.e., showing where cmlA1 would reside on the plot if 
all the reads attributed to its variants were attributed to it instead. As expected, this 
correction brings it into far better agreement with the observed trend. The reads of the 
second outlier ARG, paxtA, appear to be from a distant homolog of the reference in 
CARD. Due to this sequence variance, it has a lower enrichment efficiency.

DISCUSSION

Our work has resulted in the design of two probe sets to enrich ARGs in metagenomic 
sequencing libraries. Several improvements have been made relative to the first iteration 
of this probe set against the first version of CARD. First, a denser initial tiling and 
exclusion of perfect matches during the nt BLAST filter maximized coverage against all 
ARGs. Second, a stringent redundancy filter minimized unneeded probes. This enables 
allCARD to enrich all ARGs included in CARD more evenly with fewer probes. Alterna­
tively, clinicalCARD has a much higher redundancy since it was designed against a much 
smaller set of clinically relevant ARGs. Our in-house synthesis protocol yields a similar 
smear pattern to the commercially synthesized version when run on a urea-PAGE gel, 
indicating similar physical properties. There was a slight bias to lower molecular weights 
in the in-house synthesized probe sets, which may indicate more incorporation of biotin 
into the commercial probes.

When comparing in silico statistics of allCARD vs clinicalCARD, it is evident that 
clinicalCARD outperforms allCARD when enriching for the ARGs it was designed against. 
clinicalCARD is superior at targeting the ARGs against which it was designed due to its 
decreased need for redundancy filtering during probe design. Since it covers a smaller 
number of ARGs, fewer probes are made during the initial tiling step with BaitsTools, 
and fewer cycles of redundancy filtering are needed to satisfy the total probe number 
cut-off (Fig. 2a). This translates to more probes per ARG and, therefore, better coverage 
of the ARGs against which it was designed. However, clinicalCARD also has coverage 
against a much larger portion of CARD than only those ARGs (i.e., median coverage 
of clinicalCARD probes against allCARD ARGs is >75%). This is because of the high 
degree of conservation of ARG nucleotide sequences and the resulting redundancy in 
CARD, where one ARG may have several closely related variants (35). Overall, clinical­
CARD has higher median scores in all tested metrics against its design set of ARGs. 
Based on this, clinicalCARD should be more effective when enriching clinically relevant 
ARGs. Additionally, since it is a smaller set of probes, it will be less expensive, even 
with in-house synthesis. However, it lacks coverage of many ARGs in allCARD. As some 
questions require comprehensive coverage of all ARGs, allCARD is the better choice in 
these situations.

To test our new probe sets, five samples were used for testing: two wastewater 
samples spanning the beginning and end of winter and three soil samples from 
differently human-impacted sites. In all samples, enrichment drastically improved the 
detection of ARGs relative to shotgun sequencing, with an enrichment factor of up to 
598-fold. Our in-house synthesis consistently detected more ARGs at a lower sequencing 
depth than the commercially synthesized probes. This may be due to the evenness of 
coverage in the Twist Biosciences oligo-pool, which may provide a superior template for 
transcription and, thus, a superior capture reagent.

In wastewater samples, allCARD detected the most ARGs by a considerable margin. 
clinicalCARD detected relatively few ARGs, although those it did detect were among 
the most frequent ARGs in the sequencing data. allCARD once again detected the most 
ARGs in the soil samples, but clinicalCARD missed many ARGs in the soil except in the 
sample from the high-impact hospital grounds. This is likely due to the lack of clinically 
relevant ARGs in soil samples from environments with less human impact. We stress, 
however, that this experiment, as designed, does not indicate causality from being near 
a hospital. It merely supports the notion that samples from environments with high 
human influence carry more ARGs, a known phenomenon (57, 58).
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Compared to the large fluctuation in the number of ARGs detected between probe 
sets, the enrichment factor among probe sets was more consistent, especially in the 
wastewater samples. This suggests that with a certain input of probes, one can expect 
a given level of enrichment so long as the target is sufficiently abundant. Enrichment 
suffers when this is not the case, such as in the non-allCARD probe sets for the soil 
samples. When inspecting the number of identities between reads and references, there 
is a pronounced difference between wastewater and soil samples. Without enrichment, 
the distribution of the number of identities in unenriched reads of wastewater samples 
indicates the presence of both distant and close homologs to the references in CARD. 
After enrichment, only close homologs are present, suggesting that they are preferen­
tially enriched. However, distant homologs are enriched in their absence, such as in 
the low- and medium-impact soil samples (Fig. 5b). However, in the sample from the 
high-impact hospital grounds, there was a bias toward close homologs, especially in the 
sample enriched by clinicalCARD. Overall, this shows a pattern where clinically relevant 
ARGs have a higher identity to their references in CARD and thus are more efficiently 
enriched, particularly given that CARD and other ARG databases are biased toward 
clinical isolates (35). The distant homologs in soil samples are mainly associated with 
efflux and regulation, and we cannot know that these distant homologs confer the same 
degree and type of AMR as their reference in CARD. For this, experimental data are 
required. However, we can conclude that environmental samples with low human impact 
are less likely to contain exact matches to reference ARGs in CARD. For this reason, these 
samples are less likely to perform as well when being enriched.

There was a striking linearity when considering the correlation between the number 
of ARG-associated reads in enriched vs unenriched samples. This was unexpected due 
to the assumed effect that sequence differences, specifically GC content, would have 
on hybridization efficiency (59, 60). Relative quantification of ARGs within a sample and 
comparison among samples may be possible, i.e., a large difference in read abundance 
in enriched data indicates a proportionally large difference in shotgun data, although 
smaller differences may be challenging to detect reliably. However, our investigation 
contains few samples, and quantifying this relationship was not our primary aim.

There are limitations to enrichment as a method for resistome profiling. Enrichment 
cannot detect entirely novel resistance genes that are not in CARD. As such, we designed 
CARPDM to update the probe set for each released version of CARD. Combined with 
reduced up-front costs via our novel synthesis method, researchers can update their 
probe set on demand. Moreover, when the genes that get enriched are distant homologs 
to those in CARD, we cannot be sure if they are actual resistance genes or if they would 
generate clinical levels of resistance. More work is required to validate these genes upon 
detection. Finally, this protocol relies on proprietary hybridization reagents and buffers 
from commercial suppliers.

Conclusions

The increasing global burden of AMR requires cost-effective and scalable solutions. 
Overall, our in-house synthesized probes detect more ARGs with less sequencing than 
a commercial option in the samples tested. allCARD robustly enriches the vast array 
of ARGs against which it was designed, as well as their distant homologs. clinicalCARD 
even more robustly enriches the smaller set of clinically relevant ARGs against which 
it was designed. This work shows that targeted enrichment is a valuable companion 
to DNA sequencing when detecting ARGs. Future work will involve further updating 
and refining the set of clinically relevant ARGs and continually updating the probe 
set with every new CARD release. Additionally, while we have released a preliminary 
protocol for the in-house synthesis of any probe set, there remains room for this protocol 
to be optimized and made even less reliant on commercial reagents. Finally, to make 
this technology more accessible, future work should also investigate its efficacy on 
alternative DNA sequencing platforms, such as Oxford Nanopore’s MinION. Yet, overall, 
this work has shown the power of enrichment to decrease the cost and increase the 
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impact of large-scale monitoring of ARGs using DNA sequencing. Alongside CARD, this 
technology can help researchers investigate ARG prevalence and transmission patterns 
among different populations and environments.
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