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ABSTRACT

Antimicrobial resistance (AMR) is a global health crisis requiring rapid surveillance
across human, agricultural, and environmental systems. A major challenge during outbreaks is
not only detecting antimicrobial resistance genes (ARGs), but also unmasking their pathogen
hosts and genomic context, as ARGs alone do not fully capture AMR risk. Pathogen
identification is often essential for guiding effective treatment. While culture-based methods
remain the diagnostic gold standard, they are slow and sometimes impractical. Faster
metagenomic (mMNGS) tools typically detect either ARGs, taxonomy, or genomic context, but
rarely all three, resulting in fragmented surveillance. Existing k-mer classifiers like Kraken2 and
CLARK, designed for general taxonomy, often perform poorly on AMR-specific sequences. We
introduce CARD k-mers, the first tool built to jointly predict species-level taxonomy and genomic
context (plasmid vs. chromosome) for ARGs in short metagenomic reads. Integrated with the
Comprehensive Antibiotic Resistance Database (CARD), CARD k-mers enables rapid, context-
aware assignment of ARGs to their likely pathogen and genomic element origin. In
benchmarking with 103,456 in-silico pathogen-specific AMR alleles, CARD k-mers outperformed
Kraken2 and CLARK by 10.85% and 15.2%, respectively, and correctly classified the genomic
context of 4,590 chromosome- and 176 plasmid-specific ARGs. The tool operates at speeds
exceeding 675,000 metagenomic reads per minute. By delivering fast, accurate, and context-
rich classification of ARGs, CARD k-mers significantly advances untargeted AMR surveillance
and is accessible to users with basic command-line experience for use in both clinical and

environmental pipelines. CARD k-mers is available at: https://github.com/arpcard/rgi.
INTRODUCTION

AMR is a pressing global health challenge exacerbated by the overuse of antibiotics and
a stagnation in the development of novel drugs (1, 2). Without decisive mitigation efforts, AMR
is projected to cause approximately 39 million cumulative deaths by 2050 (1). Antibiotic-
resistant bacterial pathogens harboring ARGs evade treatment through well-characterized
resistance mechanisms (3), with particular concern for plasmid-borne elements due to their high
potential mobility between organisms via lateral gene transfer (LGT) (4). These events facilitate
the rapid dissemination of resistance, leading to multidrug- (MDRO) and ultimately, to

extensively drug-resistant (XDRO) organisms (5).

Recent advances in sequencing technologies now enable comprehensive genomic

surveillance of microbial environments, from wastewater and agricultural runoff to clinical
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samples (6, 7). These methods facilitate the detection and tracking of ARGs and priority AMR
pathogens across diverse contexts. Resources such as the Comprehensive Antibiotic
Resistance Database (CARD) have become indispensable in this effort, offering tools like the
Resistance Gene ldentifier (RGI, CARD’s main software) for in-silico identification of known
ARGs and putative novel variant discovery (8). While these advancements have aided global
public efforts, a critical gap remains linking detected ARGs to their pathogen hosts and genomic
contexts directly from metagenomic data. This step is essential in clinical settings, where timely

and accurate diagnoses are necessary to guide effective antibiotic treatment (6).

Historically, pathogen and plasmid identification relied on cultured isolates, where growth
media and molecular diagnostics inherently provided taxonomic information and genomic
context (9). These traditional phenotypic methods are limited by their reliance on culturable
bacteria while being labor-intensive (10). Consequently, culture-independent, genotypic
methods are increasingly replacing traditional approaches due to their ability to sequence entire
microbial communities with high-throughput and speed (2). These mMNGS datasets, often
containing millions of sequencing reads, present unique analytical challenges for determining

the pathogen hosts and genomic contexts of ARGs.

For decades, alignment-based tools such as BLAST, Burrows-Wheeler Transform, and
Hidden Markov Model searches have been the dominant approaches for sequence
classification (11). Alignment methods rely on aligning DNA reads to a reference genome to
assign taxonomic labels. However, they are computationally intensive, rely on subjective scoring
matrices, and assume homology between sequences, making them ill-suited for analyzing large,
diverse metagenomes (6, 11, 12). LGT events in microbial populations often violate core

assumptions of alignment-based approaches, further limiting their utility (11).

To address these challenges, bioinformatics has shifted toward alignment-free sequence
classification methods, particularly k-mer-based approaches, also used in metagenomic
assembly and a genome-wide association studies (13—15). These methods rely on exact word
matching between pre-computed pathogen-specific k-mers and query sequences, bypassing
the computational bottlenecks of alignment tools. Kraken2 is a leading k-mer-based classifier,
capable of processing millions of reads per minute, making it highly suitable for large-scale
sequence analysis (16, 17). Kraken2 classifies sequences using the lowest common ancestor
approach, assigning reads to the lowest common taxonomic rank shared by all organisms

containing a given k-mer. Conversely, CLARK, an alternative k-mer classifier, relies
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on discriminatory k-mers, which are uniquely associated with specific taxa. However, recent
evaluations have demonstrated that k-mer tools rely heavily on general-purpose reference
databases that are not optimized for domain-specific analyses (18—20). This dependency can
severely limit their accuracy and precision when applied to AMR-focused datasets, where the
taxonomic and functional complexity often surpasses what broad-spectrum reference libraries
can effectively capture. This highlights the need for a specialized classifier optimized for ARGs
and their associated pathogens, enabling untargeted AMR surveillance of metagenomic

samples.

CARD'’s RGI software now supports a k-mer classification algorithm (CARD k-mers)
specifically tailored for metagenomic AMR surveillance. CARD k-mers integrates seamlessly
with CARD’s Resistomes & Variants sequence data (CARD-R,
https://card.mcmaster.ca/prevalence), enabling accurate species-level taxonomic predictions
and mobility analysis for metagenomic reads encoding ARGs. CARD-R reflects computer-
generated resistome predictions for 414 important pathogens and includes ARG sequence
variants beyond those reported in the scientific literature. By leveraging CARD-R, ARG alleles
matching the RGI-Strict criteria, representing ARG variants closely related to known alleles but
not yet described in the literature, CARD k-mers is uniquely positioned to detect pathogens with

both known and novel functional variant ARGs.

CARD k-mers operates by constructing a reference k-mer set derived from the alleles
stored in the CARD-R database, a massive pathogen-centric database containing predicted
ARG alleles. For CARD-R version 4.0.0, this dataset includes over 40 million unique k-mers of
length 61 (61-mers, Supplementary Table 1). These k-mers are divided into two primary
categories (taxonomic versus genomic k-mers), with each serving a specific role in
classification. Taxonomic k-mers are designed to predict the pathogen-of-origin and consist of
single-species k-mers, which are unique to ARG alleles from individual species, and genus-
specific k-mers, which are unique to ARG alleles from a specific genus. These classifications
allow for both species-level identification and broader taxonomic resolution when species-
specific resolution is not possible. Genomic k-mers, on the other hand, focus on the genomic
context of ARG alleles and their potential mobility. They are further categorized into k-mers
unique to chromosomally-encoded ARG alleles, k-mers unique to plasmid-encoded ARG
alleles, and k-mers shared between chromosome- and plasmid-encoded ARG alleles. ARGs
that display little to no allelic variation and that are widely distributed across diverse taxa, such

as NDM-1, are not suitable for pathogen-of-origin prediction but can be assessed for genomic
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context to generate mobility risk insights. It is important to emphasize that both taxonomic and
genomic k-mers are derived from ARG allele sequences only and not any flanking sequences,
reserving analysis and predictive ability to the specific domain of ARG alleles. This dual
classification strategy enables CARD k-mers not only to identify the pathogen-of-origin but also

to evaluate the mobility risks of predicted ARG alleles.
MATERIALS AND METHODS
RGI Software and Reference K-mers

The CARD k-mers algorithm is implemented as a command-line tool within CARD’s RGI
software (rgi kmer_query) and depends on reference k-mers derived from the CARD-R
database, as outlined above. Users can download the CARD-R data from the CARD website
and configure custom reference k-mers of any desired length using the command rgi
kmer_build, but the CARD website provides pre-computed 61-mers for download for each
CARD-R update. The validation described in this manuscript uses these pre-computed 61-mers

except where specified.

User input sequences are classified using CARD k-mers to infer the most likely
pathogen host and determine whether each AMR gene is chromosome- or plasmid-borne
(Figure 1). Classification decisions follow a structured rules-based logic tree (Supplementary
Figure 1). The rgi kmer_query algorithm accepts input files in multiple formats, including FASTA,
RGI JSON, and RGI bwt BAM, and produces output files in both tab-delimited text and JSON
formats (Figure 2). These outputs provide a summary of the pathogen-of-origin predictions and
k-mer counts for chromosomal and plasmid sequences associated with the input data. For
taxonomic predictions, input sequences must meet a minimum k-mer coverage threshold

(default of 10 k-mers; user adjustable).

Classification Validation Datasets

Two datasets were constructed to perform separate validation tests for CARD k-mers:
pathogen and genomic classification. The first dataset to validate pathogen classification
accuracy included 320,614 in silico predicted ARG alleles, sourced from CARD-R version 4.0.0
(Figure 3). As an initial filter, 9,722 alleles were excluded because of probable LGT occurrence,
since they were observed in multiple species, making them non-pathogen specific. For example,
allele "A" was excluded as it appeared in 48 different pathogens, whereas allele "B", unique

to Salmonella enterica, was retained. A random two thirds of the sampled alleles (rounded
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down) for each pathogen were allocated to a "reference set" to build a 61-mer reference library
of taxonomic and genomic k-mers using rgi kmer_build. The remaining one-third was assigned
to a "testing set" for validation. To ensure inclusion, each pathogen required at least three
unique alleles in CARD-R, the minimum necessary for our one-third holdout validation strategy.
As a result, 62 pathogens were excluded due to insufficient data, leaving a total of 315
pathogens in the validation dataset. Stratifying the data by pathogen preserved the relative
allele distribution rates of the original CARD-R dataset. Altogether, the training set contained
207,589 alleles from 315 pathogens, while the testing set included 103,456 alleles to validate
classification accuracy. For taxonomic validation, RGI v6.0.2 kmer_query was compared against
two Kraken2 instances and one CLARK instance. Kraken2 default utilized Kraken2’s standard
70 GB library (version 2.0.8) while Kraken2 (CARD) was constructed from the training set
containing 207,589 ARG alleles as outlined above. CLARK used its standard library (version
1.3.0). For genomic classification accuracy, a subset of 8,207 genomic-specific alleles (i.e.,
alleles found exclusively in chromosomes or plasmids) from the testing set were used (Figure
3). As the original CARD-R data included pathogen, chromosome, and plasmid prevalence for
each ARG allele sequence, accuracy was defined as rgi kmer_query predicting the same
taxonomic or genomic classification while inaccuracy was defined as disagreement between
CARD-R and rgi kmer_query, albeit the latter can include “no classification” as possible output,

which we tracked separately.

Classification Rules

Following the classification of the 103,456 test set alleles, output files containing
pathogen host predictions were generated by each of the four classifiers: CARD k-mers,
Kraken2, Kraken2 (CARD), and CLARK. Kraken2 classifiers assigned highly specific taxonomy
labels, often down to the exact strain. To standardize comparisons, an intermediate taxonomy
mapping was created using ENTREZ and NCBI’s taxonomy database to scrape taxonomy

identifiers and corresponding scientific names for Kraken2 and CLARK.

Classification accuracy was assessed by comparing the predicted pathogen host to the
labelled pathogen in CARD-R for each allele. For Kraken2 classifiers, a species-level prediction
was considered correct if there was an exact scientific name match. Since alleles in CARD-R
are mapped to a base species, Kraken2 predictions specifying a strain name were also
accepted as correct if the base species matched. For example, if Kraken2 predicted the
pathogen of an allele as Escherichia coli s8 0145:H28 str. RM 12581, this was considered a

correct pathogen prediction because the CARD-R label for this allele was Escherichia coli.
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Genus-level classification accuracy was recorded using similar criteria, requiring an exact genus
match between the predicted pathogen and the CARD-R label genus. False species predictions
were labelled as erroneous calls if an incorrect species and genus name was produced, labelled
unclassified if the prediction was ambiguous, and rejected (CARD k-mers only) if the query

sequence failed to meet the minimum coverage threshold value.

For the genomic classification accuracy test, accuracy was evaluated based on the
ability of CARD k-mers to correctly classify the genomic context of each allele as either plasmid
or chromosome. Predictions of “chromosome & plasmid” indicated that the algorithm found
genomic k-mers within input sequences belonging both to plasmids and chromosomes, whereas

“no genomic info” predictions were deemed as uninformative.
Performance Benchmarking

Reference k-mer libraries from CARD-R version 4.0.0 were constructed using 61-mers
and 15-mers to benchmark speed and peak memory usage during library construction.
Additionally, one million 250 base pair reads from an existing benchmarking data set
(https://zenodo.org/records/6543357) (21) were classified to assess speed and peak memory
usage during query processing. All benchmarking analyses were performed on a Cisco Blade
server (Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz, 88 cores, 1.5 TB RAM, running Ubuntu).

Optimal k-mer Size

To experimentally determine optimal k-mer size (or at minimum justify the selection of
61-mers), pathogen classification validation was repeated with k values ranging from 5 to 100.
An additional analysis to determine the theoretical minimum k-mer size for pathogen-specific
alleles used cumulative relative entropy (CRE) analysis across millions of resampled alleles,
applying a CRE cutoff of 0.1 to identify optimal thresholds using KITSUNE (22, 23).

RESULTS
Classification Accuracy

We evaluated the accuracy of CARD k-mers, Kraken2 (default and CARD references),
and CLARK across five metrics for pathogen classification: correct species accuracy, correct
genus accuracy (alleles with a correct genus, but false species prediction), erroneous
predictions (wrong species and genus), unclassified alleles, and rejected sequences (applicable
only to CARD k-mers) (Figure 4). CARD k-mers classified 75.69% of ARG alleles to the correct
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species, with an additional 3.0% to the correct genus level, and achieved the lowest error rate
(1.3%) among all tools. Kraken2 (CARD) had a slightly higher species-level accuracy (78.85%)
but also a higher error rate (18.72%). Kraken2 default and CLARK had lower species-level
accuracies (64.84% and 60.5%, respectively) and higher erroneous predictions (31.75% and
2.0%, respectively). CARD k-mers and CLARK had the highest unclassified rates (19.88% and
34.1%, respectively), while Kraken2 tools returned fewer unclassified sequences (1.60% default
and 0.11% CARD, respectively).

For genomic classification, CARD k-mers correctly identified the genomic origin
(chromosome or plasmid) for 63.18% of chromosome and 20.02% of plasmid ARG alleles. A
substantial proportion of alleles matched both genomic types (35.61% for chromosome and
77.47% for plasmid). Erroneous classification rates remained low (1.03% for chromosome, 2.5%

for plasmid), and very few sequences were unclassified or rejected (Figure 4).
Optimal k-mer Size

Pathogen classification accuracy plateaued at approximately 80% beyond a k-mer size
of 15, with a sharp drop in unclassified predictions as k increased, while correct genus,
erroneous, and rejected categories remained stable across larger k-mer sizes (Figure 5).
Genomic classification followed similar trends, and theoretical k-mer size analyses using
entropy further supported a minimum k-mer size of 15 as a reliable minimum anchor size
(Supplementary Figure 2, 3). Performance benchmarks show that unique 15-mers are built (rgi
kmer_build) faster than 61-mers, with multi-threading reducing library construction time, but not
memory usage. Query classification (rgi kmer_query) speed, measured in reads per minute,
increased using 15-mers and multi-threading, while peak memory usage remained constant for

each k-mer size regardless of thread count (Figure 6).
DISCUSSION
Reliable Pathogen-of-Origin Prediction

CARD k-mers outperformed Kraken2 by 10.9% and CLARK by 15.2% in species
accuracy for pathogen-specific AMR alleles, supporting its utility as an alignment-free tool for
pathogen-of-origin prediction in sequences encoding ARGs. Although Kraken2 based on CARD
reference sequences achieved 3.1% higher species accuracy than CARD k-mers, it produced
17.4% more erroneous calls. Erroneous calls may pose significant public health risks, as the

misidentification of resistant pathogens can lead to inappropriate interventions (24). CARD k-
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mers adopts a conservative approach by tolerating a higher percentage of unclassified
predictions to minimize false positives, ensuring a lower error rate than Kraken2, which aims to
assign the maximum number of reads to species, resulting in a lower F1 score due to reduced
assignment fidelity (25). The conservative paradigm of CARD k-mers is particularly valuable for
AMR surveillance, where precision is paramount. If desired, CARD k-mers allows users to
adjust parameters to balance sensitivity and specificity according to their surveillance needs,

enhancing its versatility and applicability.

Additionally, CARD k-mers yielded the highest genus level accuracy at 3.0%. Genus-
level AMR surveillance can play a useful role in guiding treatment and mitigation strategies,
even when species-level identification is unavailable. Many bacterial genera exhibit
characteristic resistance mechanisms that can inform clinical decision-making. For instance,
Pseudomonas species possess intrinsic resistance to amoxicillin due to efflux pumps and porin
modifications, which render the antibiotic ineffective (26). Early genus-level identification
of Pseudomonas in clinical specimens allows clinicians to rule out the use of amoxicillin and
other ineffective treatments, opting instead for targeted therapies such as piperacillin-

tazobactam or ceftazidime while awaiting species-level data.

Further developments should focus on the validation of clinical and environmental
metagenomic sequencing datasets (as opposed to whole alleles), and subsequent statistical
analysis, such as the synergy implemented between Kraken2 and Bracken to estimate microbial
abudance (27). This addition will enrich classifications performed by CARD k-mers, adding a

quantitative dimension that deepens users’ understanding of the ARG landscape.
Genomic Classification Contextualizes ARG Mobility Risk

The conservative paradigm of CARD k-mers additionally proved effective in reducing
error rates during genomic classification. Genomic classification results in a high number of
alleles assigned to the "plasmid & chromosome k-mers" category, a class we recommend
retaining rather than binning them into the unclassified category. These k-mers, while not
unique to one genomic context, still provide valuable mobility context and help prevent incorrect
conclusions. For instance, even in the absence of direct plasmid k-mers, the presence of
plasmid & chromosome k-mers precludes ruling out plasmid-borne AMR. Future updates to
CARD k-mers will incorporate genomic islands, another type of mobile genetic element that
harbors AMR genes (28) and that is available in the CARD-R reference data.
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Domain Specificity Improves Classification

Providing CARD-R AMR alleles as reference data to Kraken2 improved species
prediction accuracy by 14%, reduced the number of erroneous calls by 13.1%, and reduced the
number of unclassified calls by 1.5%, despite the standard Kraken2 database being over 70GB
larger than CARD-R. This finding suggests that k-mer classifier accuracy can be significantly
improved by defining a precise sequence space to build the required reference k-mers, and
extends previous work done on Kraken2 general database optimization to the AMR sequence
space (18, 19).

Recommended k-mer Size

K-mer size is an arbitrary yet important parameter for k-mer classifiers (29). As a default,
CARD k-mers uses 61-mers, Kraken2 35-mers, CLARK 31-mers, but there is limited empirical
evidence to support these choices. Based on our CRE curves, experimental data and
performance monitoring, we recommend either 15-mers for faster library building and query
processing, or 61-mers for a slightly higher accuracy setting, albeit at worse computational
performance. These findings align with recent works investigating k-mer based ARG detection,
which suggest smaller sized 13-mers (30). We do not recommend using sizes smaller than 15-
mers, and sizes that are too large risk being larger than the ARGs themselves, resulting in those
sequences being rejected. Furthermore, the effects of smaller k-mers on variant AMR
sequences and their subsequent classification are largely unknown and require further
investigation; it is plausible that smaller k-mers offset the effects of single nucleotide variants
(SNVs) since k-mer coverage can instead occur over conserved regions of the AMR alleles. As
of September 2025, the CARD-R data set includes both pre-compiled 15-mer and 61-mer

reference libraries.
CARD k-mers Performance

Overall, CARD k-mers sacrifices speed for improved classification accuracy compared to
Kraken2 and CLARK in terms of reads per minute, but due to its highly specialized library,
achieves k-mer library construction much faster than Kraken2 and CLARK, which can take
several days to build. CARD will shoulder the burden of library construction by continuing to
provide pre-compiled k-mer libraries. Additionally, users can pre-process their input data to

contain only ARGs by using RGI before classifying them with CARD k-mers, and take

10
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advantage of multi-threading if possible. The eventual implementation of faster k-mer counting

algorithms into CARD k-mers will improve speed and reduce memory usage (31).
Mobility and Evolution of AMR Alleles

The LGT of ARGs among bacteria complicates the accurate taxonomic classification of
short metagenomic reads. Gene mobility enables diverse bacterial species to acquire and share
ARGs, leading to discrepancies between phylogenetic relationships and the distribution of
resistance phenotypes. Consequently, metagenomic analyses may misattribute ARGs to
incorrect taxa, posing challenges in identifying the true reservoirs and vectors of AMR.
Understanding the extent and mechanisms of LGT is crucial for improving the precision of
metagenomic AMR surveillance and developing effective strategies to combat the spread of

resistance (32).

CARD k-mers addresses some of the challenges introduced by LGT by leveraging its
pathogen-centric AMR allele database (414 pathogens as of CARD-R 4.0.2), which stores only
unique pathogen k-mers from CARD-R. This approach inherently includes SNVs for AMR
alleles associated with distinct pathogens. These embedded pathogen-specific SNVs act as
genetic markers, enabling the differentiation of native AMR alleles from those acquired via LGT,
partially mitigating concerns about gene mobility (33, 34). Additionally, 310,891 (97%) of the
AMR alleles in CARD-R have a single host pathogen, enabling precise taxonomic predictions
for most alleles (Supplementary Figure 4). For the remaining 3% of mobile AMR alleles, users

can still assess genomic context and flag these ARGs for further analysis.

SNVs also present significant challenges in the classification of emerging AMR alleles.
The presence of SNVs can lead to variations that are difficult to interpret, complicating the
determination of an allele's functional impact. This complexity is further exacerbated by the
limitations of current classification methods, which may not adequately account for the diverse
effects of SNVs on gene function (35). However, CARD k-mers may better tolerate SNVs over
other classifiers via the construction and storage of ARG variant-specific k-mers. This capability
is enabled by the inclusion of "Strict" alleles in CARD-R, which represent ARG variants not yet
been described in the literature. As a result, CARD k-mers is uniquely positioned to detect both
known and emerging ARGs in pathogens, making it a powerful tool for comprehensive AMR

surveillance.

11
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Future iterations of CARD k-mers have the potential to provide rich phenotypic insights
by integrating the extensive annotations of ARGs available in CARD. This will enable deeper k-
mer analyses, such as predicting affected drug classes and resistance mechanisms. These
enhancements could improve the genotype-to-phenotype predictive power of CARD k-mers for

short metagenomic reads.
Classifying Unclassifiable Alleles

Despite the strategies CARD k-mers implements to mitigate LGT, not all AMR alleles
receive classification. UMAP analysis of the 20,456 unclassified AMR alleles revealed two main
clusters associated with E. coli and K. pneumoniae, driven by shared resistance profiles and
conserved genes like Escherichia coli EF-Tu mutants conferring resistance to
pulvomycin (Ecol_EFTU_PLV), sulfonamide resistant dihydropteroate synthase sul/1, and
tetracycline efflux pump tet(A) (Supplementary Figure 5, Table 2). EF-Tu, a conserved bacterial
housekeeping gene encoding elongation factor Tu, is difficult to classify due to shared k-mers
across bacterial species (36). Similarly, sul1, a highly mobile antibiotic resistance gene that has
propagated globally since the 1940s, reflects the selective pressures exerted by the widespread
use of early synthetic antimicrobials, such as sulfonamides. Its extensive mobility and wide
pathogen distribution complicate efforts to predict its pathogen-of-origin, thereby challenging the

tracing of its evolutionary and epidemiological history (37).

These findings underscore the inherent difficulty in classifying conserved genes and
mobile ARGs with redundant k-mers. They highlight the limitations of current classification
strategies and emphasize the need for additional contextual data, such as genomic location,
association with mobile genetic elements (MGEs), and phylogenetic analysis to enhance
classification accuracy. Future efforts should integrate complementary epidemiological methods
to refine the identification of AMR alleles, particularly for those that remain ambiguous due to

their high mobility or shared evolutionary history.
CONCLUSIONS

Overall, CARD k-mers represents a much-needed advancement over current methods in
ARG surveillance by addressing key challenges in pathogen-of-origin identification and ARG
mobility assessment. Leveraging the pathogen-specific CARD-R database, it achieves high
taxonomic specificity and detects pathogens for both known and novel ARG variants through

the inclusion of “Strict” allele annotations in CARD-R, offsetting the effects of LGT and SNVs on
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classification. Additionally, its genomic context analysis via plasmid- and chromosome-specific
k-mers provides valuable insights into the dissemination potential of ARGs. Further refinements
to the algorithm and streamlined workflows should be investigated to improve classification
accuracy and expand genotype-to-phenotype predictions, ultimately strengthening untargeted

AMR surveillance and improving clinical outcomes.
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1. Sequencing & data prep 2. AMR pathogen host & genomic
context prediction

RGI (Resistance Gene Identifier)
detect ARGs & filter non-AMR reads - optional
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Input AMR
pathogen hosts
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) Genomic context
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Collect & sequence Download pathogen-specific Query sequences chromosome/plasmid)
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RGI required

Figure 1. Overview of a metagenomic AMR surveillance workflow using CARD k-mers for
pathogen and genomic context prediction. Step 1: A biological sample is collected and
subjected to metagenomic sequencing (MNGS). Recommended but optional, the Resistance
Gene Ildentifier (RGl) can be used to detect AMR genes and filter out non-AMR reads prior to
analysis. Pathogen-specific AMR k-mers (61-mers from CARD-R) are downloaded to construct
the reference database. Step 2: Sequences are queried using CARD k-mers, supporting input
formats such as FASTA, BAM, or JSON. The tool predicts both the pathogen host and the
genomic context (chromosome vs. plasmid) of the AMR genes. Encoded ARGs can also be

inferred if RGI filtering is applied upstream.
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reference: ARO:3002867|1D:5 |Name:dfrF | NCBI:AF028812.1 species: {1 keys} {species}
#_of_kmers_in_sequence: 91 genus: {0 keys} Escherichia coli: 11
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«
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Figure 2. CARD k-mers multi-format outputs and visualization potential. (A) Structure of text
output from the CARD k-mers tool, summarizing per-sequence information such as total k-mers,
AMR-specific k-mers, CARD-based predictions, taxonomic assignments (e.g., Escherichia coli),
and genomic context (e.g., chromosome or plasmid). (B) Structure of JSON output displaying
detailed k-mer counts per species, genus, and genomic context. Unlike the text summary, this
format provides a granular view of the k-mer evidence across possible origins, without making
direct classification calls. (C) Example sunburst chart generated from mock CARD k-mers
results on metagenomic data, illustrating the tool’s capacity to support downstream
visualizations. Concentric layers represent the detected AMR gene (center), associated
pathogen, predicted genomic context (chromosome or plasmid), and read-level contribution.
This preview from the (in-development) k-mer viz module demonstrates how users will be able

to explore resistance patterns, taxonomic distributions, and genomic origins interactively.
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© CARD-Rv4.00

320,614 variant AMR alleles

377 pathogen hosts (species)
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Excluded 9,722 shared alleles

Excluded 62 low-data pathogens

T Data partitioning

Stratify each pathogen’s allele set (33.3/66.6 split)

& 2/3 Library set W 1/3 Test set
CARD k-mers reference Sequences to validate
library (build 61-mers) CARD k-mers predictions
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& Genomic allele extraction
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Genomic Pathogen
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Figure 3. Construction of CARD k-mers validation datasets. Starting from CARD-R v4.0.0,
which includes 320,614 variant AMR alleles across 377 pathogens, 9,722 shared (multi-
pathogen) alleles and 62 low-data pathogens were excluded. The remaining alleles were
stratified by pathogen using a by-thirds partitioning strategy, with 2/3 assigned to a reference
library and 1/3 to a testing set. The resulting training set (207,589 alleles) formed the CARD k-
mers reference library. The testing set (103,456 alleles) was used to validate pathogen-of-origin
predictions. From this same test set, 8,143 chromosomal- or plasmid-specific alleles were

extracted for evaluation of genomic origin prediction accuracy.
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. Rejected sequence (CARD k-mers only)

Figure 4. Accuracy of pathogen and genomic context classification. Classification performance
is shown for pathogen prediction (left) and genomic context prediction (right) across four
classifiers: CARD k-mers (61-mers), Kraken2 (with default or CARD references; both 35-mers),
and CLARK (31-mers). For pathogen prediction, alleles were classified as rejected (CARD k-
mers only, due to insufficient k-mers), unclassified, erroneous (incorrect species and genus),
genus-level only (correct genus, incorrect species), or correct species with correct genomic
context. The inner arc represents the combined proportion of alleles classified at the genus or
better level (i.e., correct genus or correct species). For genomic context classification by CARD
k-mers, categories include rejected (insufficient k-mers), unclassified, erroneous (incorrect
genomic context), ambiguous (containing both chromosomal and plasmid k-mers), and correctly
classified to a unique genomic context (chromosome or plasmid). Percentages represent the
proportion of tested alleles in each category.
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Figure 5. Effect of k-mer size on pathogen classification accuracy with CARD k-mers. Pathogen
classification accuracy increases with k-mer size and plateaus around 80% beyond k=15. The
proportion of unclassified predictions decreases notably as k increases, while correct genus,
erroneous, and rejected categories remain relatively stable across k-mer sizes. The shaded
region highlights accuracies within 10% of the maximum observed value, emphasizing the

performance plateau and minimal gains in species-level accuracy beyond this range.
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Figure 6. Performance benchmarks for CARD k-mers. K-mer library construction (left) and
query processing (right) performance are shown for CARD k-mers using either 15-mers or 61-
mers with single-thread (1 thread) or multi-threaded (40 threads) execution. Elapsed time (left)
is measured in hours and represents total wall-clock time to build the reference library.
Classification speed (right) is measured in reads per minute (RPM) for query operations. Peak
memory usage, recorded as maximum resident set size (GB), is displayed as red text above

each bar and was consistent across thread configurations for k-mer size.
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