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ABSTRACT 

Antimicrobial resistance (AMR) is a global health crisis requiring rapid surveillance 

across human, agricultural, and environmental systems. A major challenge during outbreaks is 

not only detecting antimicrobial resistance genes (ARGs), but also unmasking their pathogen 

hosts and genomic context, as ARGs alone do not fully capture AMR risk. Pathogen 

identification is often essential for guiding effective treatment. While culture-based methods 

remain the diagnostic gold standard, they are slow and sometimes impractical. Faster 

metagenomic (mNGS) tools typically detect either ARGs, taxonomy, or genomic context, but 

rarely all three, resulting in fragmented surveillance. Existing k-mer classifiers like Kraken2 and 

CLARK, designed for general taxonomy, often perform poorly on AMR-specific sequences. We 

introduce CARD k-mers, the first tool built to jointly predict species-level taxonomy and genomic 

context (plasmid vs. chromosome) for ARGs in short metagenomic reads. Integrated with the 

Comprehensive Antibiotic Resistance Database (CARD), CARD k-mers enables rapid, context-

aware assignment of ARGs to their likely pathogen and genomic element origin. In 

benchmarking with 103,456 in-silico pathogen-specific AMR alleles, CARD k-mers outperformed 

Kraken2 and CLARK by 10.85% and 15.2%, respectively, and correctly classified the genomic 

context of 4,590 chromosome- and 176 plasmid-specific ARGs. The tool operates at speeds 

exceeding 675,000 metagenomic reads per minute. By delivering fast, accurate, and context-

rich classification of ARGs, CARD k-mers significantly advances untargeted AMR surveillance 

and is accessible to users with basic command-line experience for use in both clinical and 

environmental pipelines. CARD k-mers is available at: https://github.com/arpcard/rgi. 

INTRODUCTION           

AMR is a pressing global health challenge exacerbated by the overuse of antibiotics and 

a stagnation in the development of novel drugs (1, 2). Without decisive mitigation efforts, AMR 

is projected to cause approximately 39 million cumulative deaths by 2050 (1). Antibiotic-

resistant bacterial pathogens harboring ARGs evade treatment through well-characterized 

resistance mechanisms (3), with particular concern for plasmid-borne elements due to their high 

potential mobility between organisms via lateral gene transfer (LGT) (4). These events facilitate 

the rapid dissemination of resistance, leading to multidrug- (MDRO) and ultimately, to 

extensively drug-resistant (XDRO) organisms (5).  

Recent advances in sequencing technologies now enable comprehensive genomic 

surveillance of microbial environments, from wastewater and agricultural runoff to clinical 
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samples (6, 7). These methods facilitate the detection and tracking of ARGs and priority AMR 

pathogens across diverse contexts. Resources such as the Comprehensive Antibiotic 

Resistance Database (CARD) have become indispensable in this effort, offering tools like the 

Resistance Gene Identifier (RGI, CARD’s main software) for in-silico identification of known 

ARGs and putative novel variant discovery (8). While these advancements have aided global 

public efforts, a critical gap remains linking detected ARGs to their pathogen hosts and genomic 

contexts directly from metagenomic data. This step is essential in clinical settings, where timely 

and accurate diagnoses are necessary to guide effective antibiotic treatment (6). 

Historically, pathogen and plasmid identification relied on cultured isolates, where growth 

media and molecular diagnostics inherently provided taxonomic information and genomic 

context (9). These traditional phenotypic methods are limited by their reliance on culturable 

bacteria while being labor-intensive (10). Consequently, culture-independent, genotypic 

methods are increasingly replacing traditional approaches due to their ability to sequence entire 

microbial communities with high-throughput and speed (2). These mNGS datasets, often 

containing millions of sequencing reads, present unique analytical challenges for determining 

the pathogen hosts and genomic contexts of ARGs. 

For decades, alignment-based tools such as BLAST, Burrows-Wheeler Transform, and 

Hidden Markov Model searches have been the dominant approaches for sequence 

classification (11). Alignment methods rely on aligning DNA reads to a reference genome to 

assign taxonomic labels. However, they are computationally intensive, rely on subjective scoring 

matrices, and assume homology between sequences, making them ill-suited for analyzing large, 

diverse metagenomes (6, 11, 12). LGT events in microbial populations often violate core 

assumptions of alignment-based approaches, further limiting their utility (11).  

To address these challenges, bioinformatics has shifted toward alignment-free sequence 

classification methods, particularly k-mer-based approaches, also used in metagenomic 

assembly and a genome-wide association studies (13–15). These methods rely on exact word 

matching between pre-computed pathogen-specific k-mers and query sequences, bypassing 

the computational bottlenecks of alignment tools. Kraken2 is a leading k-mer-based classifier, 

capable of processing millions of reads per minute, making it highly suitable for large-scale 

sequence analysis (16, 17). Kraken2 classifies sequences using the lowest common ancestor 

approach, assigning reads to the lowest common taxonomic rank shared by all organisms 

containing a given k-mer. Conversely, CLARK, an alternative k-mer classifier, relies 
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on discriminatory k-mers, which are uniquely associated with specific taxa. However, recent 

evaluations have demonstrated that k-mer tools rely heavily on general-purpose reference 

databases that are not optimized for domain-specific analyses (18–20). This dependency can 

severely limit their accuracy and precision when applied to AMR-focused datasets, where the 

taxonomic and functional complexity often surpasses what broad-spectrum reference libraries 

can effectively capture. This highlights the need for a specialized classifier optimized for ARGs 

and their associated pathogens, enabling untargeted AMR surveillance of metagenomic 

samples. 

CARD’s RGI software now supports a k-mer classification algorithm (CARD k-mers) 

specifically tailored for metagenomic AMR surveillance. CARD k-mers integrates seamlessly 

with CARD’s Resistomes & Variants sequence data (CARD-R, 

https://card.mcmaster.ca/prevalence), enabling accurate species-level taxonomic predictions 

and mobility analysis for metagenomic reads encoding ARGs. CARD-R reflects computer-

generated resistome predictions for 414 important pathogens and includes ARG sequence 

variants beyond those reported in the scientific literature. By leveraging CARD-R, ARG alleles 

matching the RGI-Strict criteria, representing ARG variants closely related to known alleles but 

not yet described in the literature, CARD k-mers is uniquely positioned to detect pathogens with 

both known and novel functional variant ARGs. 

CARD k-mers operates by constructing a reference k-mer set derived from the alleles 

stored in the CARD-R database, a massive pathogen-centric database containing predicted 

ARG alleles. For CARD-R version 4.0.0, this dataset includes over 40 million unique k-mers of 

length 61 (61-mers, Supplementary Table 1). These k-mers are divided into two primary 

categories (taxonomic versus genomic k-mers), with each serving a specific role in 

classification. Taxonomic k-mers are designed to predict the pathogen-of-origin and consist of 

single-species k-mers, which are unique to ARG alleles from individual species, and genus-

specific k-mers, which are unique to ARG alleles from a specific genus. These classifications 

allow for both species-level identification and broader taxonomic resolution when species-

specific resolution is not possible. Genomic k-mers, on the other hand, focus on the genomic 

context of ARG alleles and their potential mobility. They are further categorized into k-mers 

unique to chromosomally-encoded ARG alleles, k-mers unique to plasmid-encoded ARG 

alleles, and k-mers shared between chromosome- and plasmid-encoded ARG alleles. ARGs 

that display little to no allelic variation and that are widely distributed across diverse taxa, such 

as NDM-1, are not suitable for pathogen-of-origin prediction but can be assessed for genomic 
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context to generate mobility risk insights. It is important to emphasize that both taxonomic and 

genomic k-mers are derived from ARG allele sequences only and not any flanking sequences, 

reserving analysis and predictive ability to the specific domain of ARG alleles. This dual 

classification strategy enables CARD k-mers not only to identify the pathogen-of-origin but also 

to evaluate the mobility risks of predicted ARG alleles.  

MATERIALS AND METHODS 

RGI Software and Reference K-mers 

The CARD k-mers algorithm is implemented as a command-line tool within CARD’s RGI 

software (rgi kmer_query) and depends on reference k-mers derived from the CARD-R 

database, as outlined above. Users can download the CARD-R data from the CARD website 

and configure custom reference k-mers of any desired length using the command rgi 

kmer_build, but the CARD website provides pre-computed 61-mers for download for each 

CARD-R update. The validation described in this manuscript uses these pre-computed 61-mers 

except where specified. 

User input sequences are classified using CARD k-mers to infer the most likely 

pathogen host and determine whether each AMR gene is chromosome- or plasmid-borne 

(Figure 1). Classification decisions follow a structured rules-based logic tree (Supplementary 

Figure 1). The rgi kmer_query algorithm accepts input files in multiple formats, including FASTA, 

RGI JSON, and RGI bwt BAM, and produces output files in both tab-delimited text and JSON 

formats (Figure 2). These outputs provide a summary of the pathogen-of-origin predictions and 

k-mer counts for chromosomal and plasmid sequences associated with the input data. For 

taxonomic predictions, input sequences must meet a minimum k-mer coverage threshold 

(default of 10 k-mers; user adjustable). 

Classification Validation Datasets 

Two datasets were constructed to perform separate validation tests for CARD k-mers: 

pathogen and genomic classification. The first dataset to validate pathogen classification 

accuracy included 320,614 in silico predicted ARG alleles, sourced from CARD-R version 4.0.0 

(Figure 3). As an initial filter, 9,722 alleles were excluded because of probable LGT occurrence, 

since they were observed in multiple species, making them non-pathogen specific. For example, 

allele "A" was excluded as it appeared in 48 different pathogens, whereas allele "B", unique 

to Salmonella enterica, was retained. A random two thirds of the sampled alleles (rounded 
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down) for each pathogen were allocated to a "reference set" to build a 61-mer reference library 

of taxonomic and genomic k-mers using rgi kmer_build. The remaining one-third was assigned 

to a "testing set" for validation. To ensure inclusion, each pathogen required at least three 

unique alleles in CARD-R, the minimum necessary for our one-third holdout validation strategy. 

As a result, 62 pathogens were excluded due to insufficient data, leaving a total of 315 

pathogens in the validation dataset. Stratifying the data by pathogen preserved the relative 

allele distribution rates of the original CARD-R dataset. Altogether, the training set contained 

207,589 alleles from 315 pathogens, while the testing set included 103,456 alleles to validate 

classification accuracy. For taxonomic validation, RGI v6.0.2 kmer_query was compared against 

two Kraken2 instances and one CLARK instance. Kraken2 default utilized Kraken2’s standard 

70 GB library (version 2.0.8) while Kraken2 (CARD) was constructed from the training set 

containing 207,589 ARG alleles as outlined above. CLARK used its standard library (version 

1.3.0). For genomic classification accuracy, a subset of 8,207 genomic-specific alleles (i.e., 

alleles found exclusively in chromosomes or plasmids) from the testing set were used (Figure 

3). As the original CARD-R data included pathogen, chromosome, and plasmid prevalence for 

each ARG allele sequence, accuracy was defined as rgi kmer_query predicting the same 

taxonomic or genomic classification while inaccuracy was defined as disagreement between 

CARD-R and rgi kmer_query, albeit the latter can include “no classification” as possible output, 

which we tracked separately. 

Classification Rules 

Following the classification of the 103,456 test set alleles, output files containing 

pathogen host predictions were generated by each of the four classifiers: CARD k-mers, 

Kraken2, Kraken2 (CARD), and CLARK. Kraken2 classifiers assigned highly specific taxonomy 

labels, often down to the exact strain. To standardize comparisons, an intermediate taxonomy 

mapping was created using ENTREZ and NCBI’s taxonomy database to scrape taxonomy 

identifiers and corresponding scientific names for Kraken2 and CLARK.  

Classification accuracy was assessed by comparing the predicted pathogen host to the 

labelled pathogen in CARD-R for each allele. For Kraken2 classifiers, a species-level prediction 

was considered correct if there was an exact scientific name match. Since alleles in CARD-R 

are mapped to a base species, Kraken2 predictions specifying a strain name were also 

accepted as correct if the base species matched. For example, if Kraken2 predicted the 

pathogen of an allele as Escherichia coli s8 0145:H28 str. RM12581, this was considered a 

correct pathogen prediction because the CARD-R label for this allele was Escherichia coli. 
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Genus-level classification accuracy was recorded using similar criteria, requiring an exact genus 

match between the predicted pathogen and the CARD-R label genus. False species predictions 

were labelled as erroneous calls if an incorrect species and genus name was produced, labelled 

unclassified if the prediction was ambiguous, and rejected (CARD k-mers only) if the query 

sequence failed to meet the minimum coverage threshold value. 

For the genomic classification accuracy test, accuracy was evaluated based on the 

ability of CARD k-mers to correctly classify the genomic context of each allele as either plasmid 

or chromosome. Predictions of “chromosome & plasmid” indicated that the algorithm found 

genomic k-mers within input sequences belonging both to plasmids and chromosomes, whereas 

“no genomic info” predictions were deemed as uninformative. 

Performance Benchmarking  

Reference k-mer libraries from CARD-R version 4.0.0 were constructed using 61-mers 

and 15-mers to benchmark speed and peak memory usage during library construction. 

Additionally, one million 250 base pair reads from an existing benchmarking data set 

(https://zenodo.org/records/6543357) (21) were classified to assess speed and peak memory 

usage during query processing. All benchmarking analyses were performed on a Cisco Blade 

server (Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz, 88 cores, 1.5 TB RAM, running Ubuntu).  

Optimal k-mer Size 

To experimentally determine optimal k-mer size (or at minimum justify the selection of 

61-mers), pathogen classification validation was repeated with k values ranging from 5 to 100. 

An additional analysis to determine the theoretical minimum k-mer size for pathogen-specific 

alleles used cumulative relative entropy (CRE) analysis across millions of resampled alleles, 

applying a CRE cutoff of 0.1 to identify optimal thresholds using KITSUNE (22, 23). 

RESULTS 

Classification Accuracy 

We evaluated the accuracy of CARD k-mers, Kraken2 (default and CARD references), 

and CLARK across five metrics for pathogen classification: correct species accuracy, correct 

genus accuracy (alleles with a correct genus, but false species prediction), erroneous 

predictions (wrong species and genus), unclassified alleles, and rejected sequences (applicable 

only to CARD k-mers) (Figure 4). CARD k-mers classified 75.69% of ARG alleles to the correct 
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species, with an additional 3.0% to the correct genus level, and achieved the lowest error rate 

(1.3%) among all tools. Kraken2 (CARD) had a slightly higher species-level accuracy (78.85%) 

but also a higher error rate (18.72%). Kraken2 default and CLARK had lower species-level 

accuracies (64.84% and 60.5%, respectively) and higher erroneous predictions (31.75% and 

2.0%, respectively). CARD k-mers and CLARK had the highest unclassified rates (19.88% and 

34.1%, respectively), while Kraken2 tools returned fewer unclassified sequences (1.60% default 

and 0.11% CARD, respectively).  

For genomic classification, CARD k-mers correctly identified the genomic origin 

(chromosome or plasmid) for 63.18% of chromosome and 20.02% of plasmid ARG alleles. A 

substantial proportion of alleles matched both genomic types (35.61% for chromosome and 

77.47% for plasmid). Erroneous classification rates remained low (1.03% for chromosome, 2.5% 

for plasmid), and very few sequences were unclassified or rejected (Figure 4). 

Optimal k-mer Size 

Pathogen classification accuracy plateaued at approximately 80% beyond a k-mer size 

of 15, with a sharp drop in unclassified predictions as k increased, while correct genus, 

erroneous, and rejected categories remained stable across larger k-mer sizes (Figure 5). 

Genomic classification followed similar trends, and theoretical k-mer size analyses using 

entropy further supported a minimum k-mer size of 15 as a reliable minimum anchor size 

(Supplementary Figure 2, 3). Performance benchmarks show that unique 15-mers are built (rgi 

kmer_build) faster than 61-mers, with multi-threading reducing library construction time, but not 

memory usage. Query classification (rgi kmer_query) speed, measured in reads per minute, 

increased using 15-mers and multi-threading, while peak memory usage remained constant for 

each k-mer size regardless of thread count (Figure 6). 

DISCUSSION 

Reliable Pathogen-of-Origin Prediction  

CARD k-mers outperformed Kraken2 by 10.9% and CLARK by 15.2% in species 

accuracy for pathogen-specific AMR alleles, supporting its utility as an alignment-free tool for 

pathogen-of-origin prediction in sequences encoding ARGs. Although Kraken2 based on CARD 

reference sequences achieved 3.1% higher species accuracy than CARD k-mers, it produced 

17.4% more erroneous calls. Erroneous calls may pose significant public health risks, as the 

misidentification of resistant pathogens can lead to inappropriate interventions (24). CARD k-
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mers adopts a conservative approach by tolerating a higher percentage of unclassified 

predictions to minimize false positives, ensuring a lower error rate than Kraken2, which aims to 

assign the maximum number of reads to species, resulting in a lower F1 score due to reduced 

assignment fidelity (25). The conservative paradigm of CARD k-mers is particularly valuable for 

AMR surveillance, where precision is paramount. If desired, CARD k-mers allows users to 

adjust parameters to balance sensitivity and specificity according to their surveillance needs, 

enhancing its versatility and applicability.  

Additionally, CARD k-mers yielded the highest genus level accuracy at 3.0%. Genus-

level AMR surveillance can play a useful role in guiding treatment and mitigation strategies, 

even when species-level identification is unavailable. Many bacterial genera exhibit 

characteristic resistance mechanisms that can inform clinical decision-making. For instance, 

Pseudomonas species possess intrinsic resistance to amoxicillin due to efflux pumps and porin 

modifications, which render the antibiotic ineffective (26). Early genus-level identification 

of Pseudomonas in clinical specimens allows clinicians to rule out the use of amoxicillin and 

other ineffective treatments, opting instead for targeted therapies such as piperacillin-

tazobactam or ceftazidime while awaiting species-level data. 

Further developments should focus on the validation of clinical and environmental 

metagenomic sequencing datasets (as opposed to whole alleles), and subsequent statistical 

analysis, such as the synergy implemented between Kraken2 and Bracken to estimate microbial 

abudance (27). This addition will enrich classifications performed by CARD k-mers, adding a 

quantitative dimension that deepens users’ understanding of the ARG landscape. 

Genomic Classification Contextualizes ARG Mobility Risk 

The conservative paradigm of CARD k-mers additionally proved effective in reducing 

error rates during genomic classification. Genomic classification results in a high number of 

alleles assigned to the "plasmid & chromosome k-mers" category, a class we recommend 

retaining rather than binning them into the unclassified category. These k-mers, while not 

unique to one genomic context, still provide valuable mobility context and help prevent incorrect 

conclusions. For instance, even in the absence of direct plasmid k-mers, the presence of 

plasmid & chromosome k-mers precludes ruling out plasmid-borne AMR. Future updates to 

CARD k-mers will incorporate genomic islands, another type of mobile genetic element that 

harbors AMR genes (28) and that is available in the CARD-R reference data. 
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Domain Specificity Improves Classification 

Providing CARD-R AMR alleles as reference data to Kraken2 improved species 

prediction accuracy by 14%, reduced the number of erroneous calls by 13.1%, and reduced the 

number of unclassified calls by 1.5%, despite the standard Kraken2 database being over 70GB 

larger than CARD-R. This finding suggests that k-mer classifier accuracy can be significantly 

improved by defining a precise sequence space to build the required reference k-mers, and 

extends previous work done on Kraken2 general database optimization to the AMR sequence 

space (18, 19).  

Recommended k-mer Size 

K-mer size is an arbitrary yet important parameter for k-mer classifiers (29). As a default, 

CARD k-mers uses 61-mers, Kraken2 35-mers, CLARK 31-mers, but there is limited empirical 

evidence to support these choices. Based on our CRE curves, experimental data and 

performance monitoring, we recommend either 15-mers for faster library building and query 

processing, or 61-mers for a slightly higher accuracy setting, albeit at worse computational 

performance. These findings align with recent works investigating k-mer based ARG detection, 

which suggest smaller sized 13-mers (30). We do not recommend using sizes smaller than 15-

mers, and sizes that are too large risk being larger than the ARGs themselves, resulting in those 

sequences being rejected. Furthermore, the effects of smaller k-mers on variant AMR 

sequences and their subsequent classification are largely unknown and require further 

investigation; it is plausible that smaller k-mers offset the effects of single nucleotide variants 

(SNVs) since k-mer coverage can instead occur over conserved regions of the AMR alleles. As 

of September 2025, the CARD-R data set includes both pre-compiled 15-mer and 61-mer 

reference libraries. 

CARD k-mers Performance 

Overall, CARD k-mers sacrifices speed for improved classification accuracy compared to 

Kraken2 and CLARK in terms of reads per minute, but due to its highly specialized library, 

achieves k-mer library construction much faster than Kraken2 and CLARK, which can take 

several days to build. CARD will shoulder the burden of library construction by continuing to 

provide pre-compiled k-mer libraries. Additionally, users can pre-process their input data to 

contain only ARGs by using RGI before classifying them with CARD k-mers, and take 
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advantage of multi-threading if possible. The eventual implementation of faster k-mer counting 

algorithms into CARD k-mers will improve speed and reduce memory usage (31).  

Mobility and Evolution of AMR Alleles 

The LGT of ARGs among bacteria complicates the accurate taxonomic classification of 

short metagenomic reads. Gene mobility enables diverse bacterial species to acquire and share 

ARGs, leading to discrepancies between phylogenetic relationships and the distribution of 

resistance phenotypes. Consequently, metagenomic analyses may misattribute ARGs to 

incorrect taxa, posing challenges in identifying the true reservoirs and vectors of AMR. 

Understanding the extent and mechanisms of LGT is crucial for improving the precision of 

metagenomic AMR surveillance and developing effective strategies to combat the spread of 

resistance (32).  

CARD k-mers addresses some of the challenges introduced by LGT by leveraging its 

pathogen-centric AMR allele database (414 pathogens as of CARD-R 4.0.2), which stores only 

unique pathogen k-mers from CARD-R. This approach inherently includes SNVs for AMR 

alleles associated with distinct pathogens. These embedded pathogen-specific SNVs act as 

genetic markers, enabling the differentiation of native AMR alleles from those acquired via LGT, 

partially mitigating concerns about gene mobility (33, 34). Additionally, 310,891 (97%) of the 

AMR alleles in CARD-R have a single host pathogen, enabling precise taxonomic predictions 

for most alleles (Supplementary Figure 4). For the remaining 3% of mobile AMR alleles, users 

can still assess genomic context and flag these ARGs for further analysis. 

SNVs also present significant challenges in the classification of emerging AMR alleles. 

The presence of SNVs can lead to variations that are difficult to interpret, complicating the 

determination of an allele's functional impact. This complexity is further exacerbated by the 

limitations of current classification methods, which may not adequately account for the diverse 

effects of SNVs on gene function (35). However, CARD k-mers may better tolerate SNVs over 

other classifiers via the construction and storage of ARG variant-specific k-mers. This capability 

is enabled by the inclusion of "Strict" alleles in CARD-R, which represent ARG variants not yet 

been described in the literature. As a result, CARD k-mers is uniquely positioned to detect both 

known and emerging ARGs in pathogens, making it a powerful tool for comprehensive AMR 

surveillance.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2025. ; https://doi.org/10.1101/2025.09.15.676352doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.15.676352
http://creativecommons.org/licenses/by/4.0/


 

 12 

Future iterations of CARD k-mers have the potential to provide rich phenotypic insights 

by integrating the extensive annotations of ARGs available in CARD. This will enable deeper k-

mer analyses, such as predicting affected drug classes and resistance mechanisms. These 

enhancements could improve the genotype-to-phenotype predictive power of CARD k-mers for 

short metagenomic reads. 

Classifying Unclassifiable Alleles 

Despite the strategies CARD k-mers implements to mitigate LGT, not all AMR alleles 

receive classification. UMAP analysis of the 20,456 unclassified AMR alleles revealed two main 

clusters associated with E. coli and K. pneumoniae, driven by shared resistance profiles and 

conserved genes like Escherichia coli EF-Tu mutants conferring resistance to 

pulvomycin (Ecol_EFTU_PLV), sulfonamide resistant dihydropteroate synthase sul1, and 

tetracycline efflux pump tet(A) (Supplementary Figure 5, Table 2). EF-Tu, a conserved bacterial 

housekeeping gene encoding elongation factor Tu, is difficult to classify due to shared k-mers 

across bacterial species (36). Similarly, sul1, a highly mobile antibiotic resistance gene that has 

propagated globally since the 1940s, reflects the selective pressures exerted by the widespread 

use of early synthetic antimicrobials, such as sulfonamides. Its extensive mobility and wide 

pathogen distribution complicate efforts to predict its pathogen-of-origin, thereby challenging the 

tracing of its evolutionary and epidemiological history (37). 

These findings underscore the inherent difficulty in classifying conserved genes and 

mobile ARGs with redundant k-mers. They highlight the limitations of current classification 

strategies and emphasize the need for additional contextual data, such as genomic location, 

association with mobile genetic elements (MGEs), and phylogenetic analysis to enhance 

classification accuracy. Future efforts should integrate complementary epidemiological methods 

to refine the identification of AMR alleles, particularly for those that remain ambiguous due to 

their high mobility or shared evolutionary history. 

CONCLUSIONS 

Overall, CARD k-mers represents a much-needed advancement over current methods in 

ARG surveillance by addressing key challenges in pathogen-of-origin identification and ARG 

mobility assessment. Leveraging the pathogen-specific CARD-R database, it achieves high 

taxonomic specificity and detects pathogens for both known and novel ARG variants through 

the inclusion of “Strict” allele annotations in CARD-R, offsetting the effects of LGT and SNVs on 
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classification. Additionally, its genomic context analysis via plasmid- and chromosome-specific 

k-mers provides valuable insights into the dissemination potential of ARGs. Further refinements 

to the algorithm and streamlined workflows should be investigated to improve classification 

accuracy and expand genotype-to-phenotype predictions, ultimately strengthening untargeted 

AMR surveillance and improving clinical outcomes. 

SOFTWARE & DATA AVAILABILITY 

Version controlled copies of the Resistance Gene Identifier (RGI) are available at the 

CARD GitHub repository: https://github.com/arpcard/rgi. All data files for validation can be found 

in GitHub repository https://github.com/mawlodarski/card-kmers. Benchmarking data be found 

at https://zenodo.org/records/6543357. 
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Supplementary Data are available in association with this manuscript at bioRxiv. 
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Figure 1. Overview of a metagenomic AMR surveillance workflow using CARD k-mers for 

pathogen and genomic context prediction. Step 1: A biological sample is collected and 

subjected to metagenomic sequencing (mNGS). Recommended but optional, the Resistance 

Gene Identifier (RGI) can be used to detect AMR genes and filter out non-AMR reads prior to 

analysis. Pathogen-specific AMR k-mers (61-mers from CARD-R) are downloaded to construct 

the reference database. Step 2: Sequences are queried using CARD k-mers, supporting input 

formats such as FASTA, BAM, or JSON. The tool predicts both the pathogen host and the 

genomic context (chromosome vs. plasmid) of the AMR genes. Encoded ARGs can also be 

inferred if RGI filtering is applied upstream. 
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Figure 2. CARD k-mers multi-format outputs and visualization potential. (A) Structure of text 

output from the CARD k-mers tool, summarizing per-sequence information such as total k-mers, 

AMR-specific k-mers, CARD-based predictions, taxonomic assignments (e.g., Escherichia coli), 

and genomic context (e.g., chromosome or plasmid). (B) Structure of JSON output displaying 

detailed k-mer counts per species, genus, and genomic context. Unlike the text summary, this 

format provides a granular view of the k-mer evidence across possible origins, without making 

direct classification calls. (C) Example sunburst chart generated from mock CARD k-mers 

results on metagenomic data, illustrating the tool’s capacity to support downstream 

visualizations. Concentric layers represent the detected AMR gene (center), associated 

pathogen, predicted genomic context (chromosome or plasmid), and read-level contribution. 

This preview from the (in-development) k-mer viz module demonstrates how users will be able 

to explore resistance patterns, taxonomic distributions, and genomic origins interactively. 
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Figure 3. Construction of CARD k-mers validation datasets. Starting from CARD-R v4.0.0, 

which includes 320,614 variant AMR alleles across 377 pathogens, 9,722 shared (multi-

pathogen) alleles and 62 low-data pathogens were excluded. The remaining alleles were 

stratified by pathogen using a by-thirds partitioning strategy, with 2/3 assigned to a reference 

library and 1/3 to a testing set. The resulting training set (207,589 alleles) formed the CARD k-

mers reference library. The testing set (103,456 alleles) was used to validate pathogen-of-origin 

predictions. From this same test set, 8,143 chromosomal- or plasmid-specific alleles were 

extracted for evaluation of genomic origin prediction accuracy. 
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Figure 4. Accuracy of pathogen and genomic context classification. Classification performance 

is shown for pathogen prediction (left) and genomic context prediction (right) across four 

classifiers: CARD k-mers (61-mers), Kraken2 (with default or CARD references; both 35-mers), 

and CLARK (31-mers). For pathogen prediction, alleles were classified as rejected (CARD k-

mers only, due to insufficient k-mers), unclassified, erroneous (incorrect species and genus), 

genus-level only (correct genus, incorrect species), or correct species with correct genomic 

context. The inner arc represents the combined proportion of alleles classified at the genus or 

better level (i.e., correct genus or correct species). For genomic context classification by CARD 

k-mers, categories include rejected (insufficient k-mers), unclassified, erroneous (incorrect 

genomic context), ambiguous (containing both chromosomal and plasmid k-mers), and correctly 

classified to a unique genomic context (chromosome or plasmid). Percentages represent the 

proportion of tested alleles in each category. 
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Figure 5. Effect of k-mer size on pathogen classification accuracy with CARD k-mers. Pathogen 

classification accuracy increases with k-mer size and plateaus around 80% beyond k=15. The 

proportion of unclassified predictions decreases notably as k increases, while correct genus, 

erroneous, and rejected categories remain relatively stable across k-mer sizes. The shaded 

region highlights accuracies within 10% of the maximum observed value, emphasizing the 

performance plateau and minimal gains in species-level accuracy beyond this range. 
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Figure 6. Performance benchmarks for CARD k-mers. K-mer library construction (left) and 

query processing (right) performance are shown for CARD k-mers using either 15-mers or 61-

mers with single-thread (1 thread) or multi-threaded (40 threads) execution. Elapsed time (left) 

is measured in hours and represents total wall-clock time to build the reference library. 

Classification speed (right) is measured in reads per minute (RPM) for query operations. Peak 

memory usage, recorded as maximum resident set size (GB), is displayed as red text above 

each bar and was consistent across thread configurations for k-mer size.  
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