Module 2: Bonus Exercise Results
PCA
Plot PC projections (embeddings).
tSNE:
## sigma summary: Min. : 0.295392306171995 |1st Qu. : 0.424864940106807 |Median : 0.475900590252246 |Mean : 0.477263744443299 |3rd Qu. : 0.522810659014478 |Max. : 0.672971536327323 |
## Epoch: Iteration #100 error is: 14.6669674525767
## Epoch: Iteration #200 error is: 0.465465889645699
## Epoch: Iteration #300 error is: 0.435757790287191
## Epoch: Iteration #400 error is: 0.425311664262475
## Epoch: Iteration #500 error is: 0.421470785377238
## Epoch: Iteration #600 error is: 0.419233482585354
## Epoch: Iteration #700 error is: 0.417911377087874
## Epoch: Iteration #800 error is: 0.416752108062093
## Epoch: Iteration #900 error is: 0.415898806246328
## Epoch: Iteration #1000 error is: 0.414069633757249
## sigma summary: Min. : 0.42069998064187 |1st Qu. : 0.505494820242659 |Median : 0.550282641638609 |Mean : 0.553782538032253 |3rd Qu. : 0.597446288884567 |Max. : 0.737568418500652 |
## Epoch: Iteration #100 error is: 13.9599659396507
## Epoch: Iteration #200 error is: 0.379056566514335
## Epoch: Iteration #300 error is: 0.357523195588169
## Epoch: Iteration #400 error is: 0.353181740043937
## Epoch: Iteration #500 error is: 0.351078936228493
## Epoch: Iteration #600 error is: 0.349768012171594
## Epoch: Iteration #700 error is: 0.348957640897146
## Epoch: Iteration #800 error is: 0.348451722454254
## Epoch: Iteration #900 error is: 0.34817415726611
## Epoch: Iteration #1000 error is: 0.348011884587493
## sigma summary: Min. : 0.539839363698465 |1st Qu. : 0.634067694694373 |Median : 0.675230651916411 |Mean : 0.676426601512199 |3rd Qu. : 0.712708887622463 |Max. : 0.85041386579969 |
## Epoch: Iteration #100 error is: 12.9363552405265
## Epoch: Iteration #200 error is: 0.385680569392373
## Epoch: Iteration #300 error is: 0.382013940523326
## Epoch: Iteration #400 error is: 0.382013661049581
## Epoch: Iteration #500 error is: 0.382013661049348
## Epoch: Iteration #600 error is: 0.382013661049346
## Epoch: Iteration #700 error is: 0.38201366104934
## Epoch: Iteration #800 error is: 0.382013661049339
## Epoch: Iteration #900 error is: 0.382013661049342
## Epoch: Iteration #1000 error is: 0.382013661049339
## sigma summary: Min. : 0.689338665294285 |1st Qu. : 0.801156853023062 |Median : 0.838030059692607 |Mean : 0.83585263946599 |3rd Qu. : 0.869043547272454 |Max. : 1.00462478171883 |
## Epoch: Iteration #100 error is: 11.1940341786684
## Epoch: Iteration #200 error is: 0.226277779269117
## Epoch: Iteration #300 error is: 0.212882659495643
## Epoch: Iteration #400 error is: 0.212881985379496
## Epoch: Iteration #500 error is: 0.212881984821169
## Epoch: Iteration #600 error is: 0.212881984820399
## Epoch: Iteration #700 error is: 0.212881984820421
## Epoch: Iteration #800 error is: 0.212881984820413
## Epoch: Iteration #900 error is: 0.212881984820417
## Epoch: Iteration #1000 error is: 0.212881984820416
sex_cols = c(“orchid”,“forestgreen”)[factor(crabs$sex)]
Color-code tSNE plot by species, try various perplexity levels:
species_cols = c("orchid","forestgreen")[factor(crabs$sp)]
par(mfrow=c(2,2))
plot(c_tsne10[,1],
c_tsne10[,2],
main = "Perplexity = 10",
col = species_cols)
plot(c_tsne20[,1],
c_tsne20[,2],
main = "Perplexity = 20",
col = species_cols)
plot(c_tsne50[,1],
c_tsne50[,2],
main = "Perplexity = 50",
col = species_cols)
plot(c_tsne100[,1],
c_tsne100[,2],
main = "Perplexity = 100",
col = species_cols)
Now do the same, but colour-code for sex:
sex_cols = c("orchid","forestgreen")[factor(crabs$sex)]
par(mfrow=c(2,2))
plot(c_tsne10[,1],
c_tsne10[,2],
main = "Perplexity = 10",
col = sex_cols)
plot(c_tsne20[,1],
c_tsne20[,2],
main = "Perplexity = 20",
col = sex_cols)
plot(c_tsne50[,1],
c_tsne50[,2],
main = "Perplexity = 50",
col = sex_cols)
plot(c_tsne100[,1],
c_tsne100[,2],
main = "Perplexity = 100",
col = sex_cols)
Run UMAP
## List of 4
## $ layout: num [1:200, 1:2] 0.469 0.585 0.703 1.114 1.037 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:200] "1" "2" "3" "4" ...
## .. ..$ : NULL
## $ data : num [1:200, 1:5] 8.1 8.8 9.2 9.6 9.8 10.8 11.1 11.6 11.8 11.8 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:200] "1" "2" "3" "4" ...
## .. ..$ : chr [1:5] "FL" "RW" "CL" "CW" ...
## $ knn :List of 2
## ..$ indexes : int [1:200, 1:15] 1 2 3 4 5 6 7 8 9 10 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:200] "1" "2" "3" "4" ...
## .. .. ..$ : NULL
## ..$ distances: num [1:200, 1:15] 0 0 0 0 0 0 0 0 0 0 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:200] "1" "2" "3" "4" ...
## .. .. ..$ : NULL
## ..- attr(*, "class")= chr "umap.knn"
## $ config:List of 24
## ..$ n_neighbors : int 15
## ..$ n_components : int 2
## ..$ metric : chr "euclidean"
## ..$ n_epochs : int 200
## ..$ input : chr "data"
## ..$ init : chr "spectral"
## ..$ min_dist : num 0.1
## ..$ set_op_mix_ratio : num 1
## ..$ local_connectivity : num 1
## ..$ bandwidth : num 1
## ..$ alpha : num 1
## ..$ gamma : num 1
## ..$ negative_sample_rate: int 5
## ..$ a : num 1.58
## ..$ b : num 0.895
## ..$ spread : num 1
## ..$ random_state : int 401678036
## ..$ transform_state : int NA
## ..$ knn : logi NA
## ..$ knn_repeats : num 1
## ..$ verbose : logi FALSE
## ..$ umap_learn_args : logi NA
## ..$ method : chr "naive"
## ..$ metric.function :function (m, origin, targets)
## ..- attr(*, "class")= chr "umap.config"
## - attr(*, "class")= chr "umap"
par(mfrow=c(1,2))
plot(c_umap$layout[,1],
c_umap$layout[,2],
col = species_cols, pch = 19,
main = "Colored by species")
plot(c_umap$layout[,1],
c_umap$layout[,2],
col = sex_cols, pch = 19,
main = "Colored by sex")